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Abstract

Community detection is the task of detecting hidden communities from observed interac-
tions. Guaranteed community detection has so far been mostly limited to models with
non-overlapping communities such as the stochastic block model. In this paper, we remove
this restriction, and provide guaranteed community detection for a family of probabilistic
network models with overlapping communities, termed as the mixed membership Dirichlet
model, first introduced by Airoldi et al. (2008). This model allows for nodes to have frac-
tional memberships in multiple communities and assumes that the community memberships
are drawn from a Dirichlet distribution. Moreover, it contains the stochastic block model
as a special case. We propose a unified approach to learning these models via a tensor
spectral decomposition method. Our estimator is based on low-order moment tensor of the
observed network, consisting of 3-star counts. Our learning method is fast and is based
on simple linear algebraic operations, e.g., singular value decomposition and tensor power
iterations. We provide guaranteed recovery of community memberships and model param-
eters and present a careful finite sample analysis of our learning method. As an important
special case, our results match the best known scaling requirements for the (homogeneous)
stochastic block model.
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1. Introduction

Studying communities forms an integral part of social network analysis. A community
generally refers to a group of individuals with shared interests (e.g., music, sports), or
relationships (e.g., friends, co-workers). Community formation in social networks has been
studied by many sociologists, (e.g., Moreno, 1934; Lazarsfeld et al., 1954; McPherson et al.,
2001; Currarini et al., 2009), starting with the seminal work of Moreno (1934). They posit
various factors such as homophily1 among the individuals to be responsible for community
formation. Various probabilistic and non-probabilistic network models attempt to explain
community formation. In addition, they also attempt to quantify interactions and the
extent of overlap between different communities, relative sizes among the communities, and
various other network properties. Studying such community models are also of interest in
other domains, e.g., in biological networks.

While there exists a vast literature on community models, learning these models is
typically challenging, and various heuristics such as Markov Chain Monte Carlo (MCMC) or
variational expectation maximization (EM) are employed in practice. Such heuristics tend
to scale poorly for large networks. On the other hand, community models with guaranteed
learning methods tend to be restrictive. A popular class of probabilistic models, termed
as stochastic blockmodels, have been widely studied and enjoy strong theoretical learning
guarantees, (e.g., White et al., 1976; Holland et al., 1983; Fienberg et al., 1985; Wang
and Wong, 1987; Snijders and Nowicki, 1997; McSherry, 2001). On the other hand, they
posit that an individual belongs to a single community, which does not hold in most real
settings (Palla et al., 2005).

In this paper, we consider a class of mixed membership community models, originally
introduced by Airoldi et al. (2008), and recently employed by Xing et al. (2010) and Gopalan
et al. (2012). The model has been shown to be effective in many real-world settings, but
so far, no learning approach exists with provable guarantees. In this paper, we provide a
novel learning approach for learning these mixed membership models and prove that these
methods succeed under a set of sufficient conditions.

The mixed membership community model of Airoldi et al. (2008) has a number of
attractive properties. It retains many of the convenient properties of the stochastic block
model. For instance, conditional independence of the edges is assumed, given the community
memberships of the nodes in the network. At the same time, it allows for communities to
overlap, and for every individual to be fractionally involved in different communities. It
includes the stochastic block model as a special case (corresponding to zero overlap among
the different communities). This enables us to compare our learning guarantees with existing
works for stochastic block models and also study how the extent of overlap among different
communities affects the learning performance.

1.1 Summary of Results

We now summarize the main contributions of this paper. We propose a novel approach for
learning mixed membership community models of Airoldi et al. (2008). Our approach is a
method of moments estimator and incorporates tensor spectral decomposition. We provide

1. The term homophily refers to the tendency that individuals belonging to the same community tend to
connect more than individuals in different communities.
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guarantees for our approach under a set of sufficient conditions. Finally, we compare our
results to existing ones for the special case of the stochastic block model, where nodes belong
to a single community.

1.1.1 Learning Mixed Membership Models

We present a tensor-based approach for learning the mixed membership stochastic block
model (MMSB) proposed by Airoldi et al. (2008). In the MMSB model, the community
membership vectors are drawn from the Dirichlet distribution, denoted by Dir(α), where α
is known the Dirichlet concentration vector. Employing the Dirichlet distribution results
in sparse community memberships in certain regimes of α, which is realistic. The extent of
overlap between different communities under the MMSB model is controlled (roughly) via a
single scalar parameter, α0 :=

∑
i αi, where α := [αi] is the Dirichlet concentration vector.

When α0 → 0, the mixed membership model degenerates to a stochastic block model and
we have non-overlapping communities. When αi < 1 (and hence, α0 < k), the generated
vectors tend to be sparse and we focus on this regime in this paper.

We propose a unified tensor-based learning method for the MMSB model and establish
recovery guarantees under a set of sufficient conditions. These conditions are in in terms of
the network size n, the number of communities k, extent of community overlaps (through
α0), and the average edge connectivity across various communities. Below, we present an
overview of our guarantees for the special case of equal sized communities (each of size
n/k) and homogeneous community connectivity: let p be the probability for any intra-
community edge to occur, and q be the probability for any inter-community edge. Let
Π be the community membership matrix, where Π(i) denotes the ith row, which is the
vector of membership weights of the nodes for the ith community. Let P be the community
connectivity matrix such that P (i, i) = p and P (i, j) = q for i 6= j.

Theorem 1 (Main Result) For an MMSB model with network size n, number of com-
munities k, connectivity parameters p, q and community overlap parameter α0, when2

n = Ω̃(k2(α0 + 1)2),
p− q
√
p

= Ω̃

(
(α0 + 1)k

n1/2

)
, (1)

our estimated community membership matrix Π̂ and the edge connectivity matrix P̂ satisfy
with high probability (w.h.p.)

επ,`1
n

:=
1

n
max
i∈[n]
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2√p

(p− q)
√
n

)
(2)

εP := max
i,j∈[k]

|P̂i,j − Pi,j | = Õ

(
(α0 + 1)3/2k

√
p

√
n

)
. (3)

Further, our support estimates Ŝ satisfy w.h.p.,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (4)

where Π is the true community membership matrix and the threshold is chosen as ξ = Ω(εP ).

2. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
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Remark: Note that the scaling condition in (1) ensures that
επ,`1
n in (2) is decaying, since

we assume that α0 < k (sparse regime). However, if we want the estimation error εP in
(3) to decay, we require a slightly stronger condition with respect to α0 that

n = Ω̃(k2(α0 + 1)3),
p− q
√
p

= Ω̃

(
(α0 + 1)1.5k

n1/2

)
.

The complete details are in Section 4. We first provide some intuitions behind the
sufficient conditions in (1). We require the network size n to be large enough compared
to the number of communities k, and for the separation p − q to be large enough, so that
the learning method can distinguish the different communities. This is natural since a zero
separation (p = q) implies that the communities are indistinguishable. Moreover, we see
that the scaling requirements become more stringent as α0 increases. This is intuitive since
it is harder to learn communities with more overlap, and we quantify this scaling. For the
Dirichlet distribution, it can be shown that the number of “significant” entries is roughly
O(α0) with high probability, and in many settings of practical interest, nodes may have
significant memberships in only a few communities, and thus, α0 is a constant (or growing
slowly) in many instances.

In addition, we quantify the error bounds for estimating various parameters of the mixed
membership model in (2) and (3). These errors decay under the sufficient conditions in (1).
Lastly, we establish zero-error guarantees for support recovery in (4): our learning method
correctly identifies (w.h.p) all the significant memberships of a node and also identifies the
set of communities where a node does not have a strong presence, and we quantify the
threshold ξ in Theorem 1. Further, we present the results for a general (non-homogeneous)
MMSB model in Section 4.2.

1.1.2 Identifiability Result for the MMSB Model

A byproduct of our analysis yields novel identifiability results for the MMSB model based
on low order graph moments. We establish that the MMSB model is identifiable, given
access to third order moments in the form of counts of 3-star subgraphs, i.e., a star subgraph
consisting of three leaves, for each triplet of leaves, when the community connectivity matrix
P is full rank. Our learning approach involves decomposition of this third order tensor.
Previous identifiability results required access to high order moments and were limited to
the stochastic block model setting; see Section 1.3 for details.

1.1.3 Implications on Learning Stochastic Block Models

Our results have implications for learning stochastic block models, which is a special case
of the MMSB model with α0 → 0. In this case, the sufficient conditions in (1) reduce to

n = Ω̃(k2),
p− q
√
p

= Ω̃

(
k

n1/2

)
, (5)

2242



A Tensor Approach to Learning Mixed Membership Community Models

The scaling requirements in (5) match with the best known bounds3 (up to poly-log factors)
for learning uniform stochastic block models and were previously achieved by Chen et al.
(2012) via convex optimization involving semi-definite programming (SDP). In contrast,
we propose an iterative non-convex approach involving tensor power iterations and linear
algebraic techniques, and obtain similar guarantees. For a detailed comparison of learning
guarantees under various methods for learning (homogeneous) stochastic block models,
see Chen et al. (2012).

Thus, we establish learning guarantees explicitly in terms of the extent of overlap among
the different communities for general MMSB models. Many real-world networks involve
sparse community memberships and the total number of communities is typically much
larger than the extent of membership of a single individual, e.g., hobbies/interests of a
person, university/company networks that a person belongs to, the set of transcription
factors regulating a gene, and so on. Thus, we see that in this regime of practical interest,
where α0 = Θ(1), the scaling requirements in (1) match those for the stochastic block model
in (5) (up to polylog factors) without any degradation in learning performance. Thus, we
establish that learning community models with sparse community memberships is akin to
learning stochastic block models and we present a unified approach and analysis for learning
these models.

To the best of our knowledge, this work is the first to establish polynomial time learning
guarantees for probabilistic network models with overlapping communities and we provide a
fast and an iterative learning approach through linear algebraic techniques and tensor power
iterations. While the results of this paper are mostly limited to a theoretical analysis of
the tensor method for learning overlapping communities, we note recent results which show
that this method (with improvements and modifications) is very accurate in practice on
real datasets from social networks, and is scalable to graphs with millions of nodes (Huang
et al., 2013).

1.2 Overview of Techniques

We now describe the main techniques employed in our learning approach and in establishing
the recovery guarantees.

1.2.1 Method of Moments and Subgraph Counts

We propose an efficient learning algorithm based on low order moments, viz., counts of
small subgraphs. Specifically, we employ a third-order tensor which counts the number of
3-stars in the observed network. A 3-star is a star graph with three leaves (see Figure 1)
and we count the occurrences of such 3-stars across different partitions. We establish that
(an adjusted) 3-star count tensor has a simple relationship with the model parameters,
when the network is drawn from a mixed membership model. We propose a multi-linear
transformation using edge-count matrices (also termed as the process of whitening), which
reduces the problem of learning mixed membership models to the canonical polyadic (CP)
decomposition of an orthogonal symmetric tensor, for which tractable decomposition exists,

3. There are many methods which achieve the best known scaling for n in (5), but have worse scaling for
the separation p − q. This includes variants of the spectral clustering method, (e.g., Chaudhuri et al.,
2012). See Chen et al. (2012) for a detailed comparison.
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as described below. Note that the decomposition of a general tensor into its rank-one
components is referred to as its CP decomposition (Kolda and Bader, 2009) and is in
general NP-hard (Hillar and Lim, 2013). However, the decomposition is tractable in the
special case of an orthogonal symmetric tensor considered here.

1.2.2 Tensor Spectral Decomposition via Power Iterations

Our tensor decomposition method is based on the popular power iterations (see Anandku-
mar et al., 2012a, e.g.,). It is a simple iterative method to compute the stable eigen-pairs
of a tensor. In this paper, we propose various modifications to the basic power method
to strengthen the recovery guarantees under perturbations. For instance, we introduce
adaptive deflation techniques (which involves subtracting out the eigen-pairs previously es-
timated). Moreover, we initialize the tensor power method with (whitened) neighborhood
vectors from the observed network, as opposed to random initialization. In the regime,
where the community overlaps are small, this leads to an improved performance. Addi-
tionally, we incorporate thresholding as a post-processing operation, which again, leads to
improved guarantees for sparse community memberships, i.e., when the overlap among dif-
ferent communities is small. We theoretically establish that all these modifications lead to
improvement in performance guarantees and we discuss comparisons with the basic power
method in Section 4.4.

1.2.3 Sample Analysis

We establish that our learning approach correctly recovers the model parameters and the
community memberships of all nodes under exact moments. We then carry out a care-
ful analysis of the empirical graph moments, computed using the network observations.
We establish tensor concentration bounds and also control the perturbation of the various
quantities used by our learning algorithm via matrix Bernstein’s inequality (Tropp, 2012,
thm. 1.4) and other inequalities. We impose the scaling requirements in (1) for various
concentration bounds to hold.

1.3 Related Work

There is extensive work on modeling communities and various algorithms and heuristics for
discovering them. We mostly limit our focus to works with theoretical guarantees.

1.3.1 Method of Moments

The method of moments approach dates back to Pearson (1894) and has been applied for
learning various community models. Here, the moments correspond to counts of various
subgraphs in the network. They typically consist of aggregate quantities, e.g., number of
star subgraphs, triangles etc. in the network. For instance, Bickel et al. (2011) analyze
the moments of a stochastic block model and establish that the subgraph counts of certain
structures, termed as “wheels” (a family of trees), are sufficient for identifiability under some
natural non-degeneracy conditions. In contrast, we establish that moments up to third order
(corresponding to edge and 3-star counts) are sufficient for identifiability of the stochastic
block model, and also more generally, for the mixed membership Dirichlet model. We
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employ subgraph count tensors, corresponding to the number of subgraphs (such as stars)
over a set of labeled vertices, while the work of Bickel et al. (2011) considers only aggregate
(i.e., scalar) counts. Considering tensor moments allows us to use simple subgraphs (edges
and 3 stars) corresponding to low order moments, rather than more complicated graphs
(e.g., wheels considered by Bickel et al. (2011)) with larger number of nodes, for learning
the community model.

The method of moments is also relevant for the family of random graph models termed as
exponential random graph models (Holland and Leinhardt, 1981; Frank and Strauss, 1986).
Subgraph counts of fixed graphs such as stars and triangles serve as sufficient statistics
for these models. However, parameter estimation given the subgraph counts is in general
NP-hard, due to the normalization constant in the likelihood (the partition function) and
the model suffers from degeneracy issues; see Rinaldo et al. (2009); Chatterjee and Diaconis
(2011) for detailed discussion. In contrast, we establish in this paper that the mixed mem-
bership model is amenable to simple estimation methods through linear algebraic operations
and tensor power iterations using subgraph counts of 3-stars.

1.3.2 Stochastic Block Models

Many algorithms provide learning guarantees for stochastic block models. For a detailed
comparison of these methods, see the recent work by Chen et al. (2012). A popular method is
based on spectral clustering (McSherry, 2001), where community memberships are inferred
through projection onto the spectrum of the Laplacian matrix (or its variants). This method
is fast and easy to implement (via singular value decomposition). There are many variants
of this method, e.g., the work of Chaudhuri et al. (2012) employs normalized Laplacian
matrix to handle degree heterogeneities. In contrast, the work of Chen et al. (2012) uses
convex optimization techniques via semi-definite programming learning block models. For
a detailed comparison of learning guarantees under various methods for learning stochastic
block models, see Chen et al. (2012).

1.3.3 Non-probabilistic Approaches

The classical approach to community detection tries to directly exploit the properties of the
graph to define communities, without assuming a probabilistic model. Girvan and Newman
(2002) use betweenness to remove edges until only communities are left. However, Bickel
and Chen (2009) show that these algorithms are (asymptotically) biased and that using
modularity scores can lead to the discovery of an incorrect community structure, even for
large graphs. Jalali et al. (2011) define community structure as the structure that satisfies
the maximum number of edge constraints (whether two individuals like/dislike each other).
However, these models assume that every individual belongs to a single community.

Recently, some non-probabilistic approaches have been introduced with overlapping
community models by Arora et al. (2012) and Balcan et al. (2012). The analysis of Arora
et al. (2012) is mostly limited to dense graphs (i.e., Θ(n2) edges for a n node graph), while
our analysis provides learning guarantees for much sparser graphs (as seen by the scaling
requirements in (1)). Moreover, the running time of the method of Arora et al. (2012) is
quasipolynomial time (i.e., O(nlogn)) for the general case, and is based on a combinatorial
learning approach. In contrast, our learning approach is based on simple linear algebraic
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techniques and the running time is a low-order polynomial (roughly it is O(n2k) for a n node
network with k communities under a serial computation model and O(n+ k3) under a par-
allel computation model). The work of Balcan et al. (2012) assumes endogenously formed
communities, by constraining the fraction of edges within a community compared to the
outside. They provide a polynomial time algorithm for finding all such “self-determined”
communities and the running time is nO(log 1/α)/α, where α is the fraction of edges within a
self-determined community, and this bound is improved to linear time when α > 1/2. On
the other hand, the running time of our algorithm is mostly independent of the parameters
of the assumed model, (and is roughly O(n2k)). Moreover, both these works are limited to
homophilic models, where there are more edges within each community, than between any
two different communities. However, our learning approach is not limited to this setting and
also does not assume homogeneity in edge connectivity across different communities (but in-
stead it makes probabilistic assumptions on community formation). In addition, we provide
improved guarantees for homophilic models by considering additional post-processing steps
in our algorithm. Recently, Abraham et al. (2012) provide an algorithm for approximating
the parameters of an Euclidean log-linear model in polynomial time. However, there setting
is considerably different than the one in this paper.

1.3.4 Inhomogeneous Random Graphs, Graph Limits and Weak Regularity
Lemma

Inhomogeneous random graphs have been analyzed in a variety of settings (e.g., Bollobás
et al., 2007; Lovász, 2009) and are generalizations of the stochastic block model. Here,
the probability of an edge between any two nodes is characterized by a general function
(rather than by a k × k matrix as in the stochastic block model with k blocks). Note that
the mixed membership model considered in this work is a special instance of this general
framework. These models arise as the limits of convergent (dense) graph sequences and for
this reason, the functions are also termed as “graphons” or graph limits (Lovász, 2009). A
deep result in this context is the regularity lemma and its variants. The weak regularity
lemma proposed by Frieze and Kannan (1999), showed that any convergent dense graph
can be approximated by a stochastic block model. Moreover, they propose an algorithm to
learn such a block model based on the so-called d2 distance. The d2 distance between two
nodes measures similarity with respect to their “two-hop” neighbors and the block model
is obtained by thresholding the d2 distances. However, the method is limited to learning
block models and not overlapping communities.

1.3.5 Learning Latent Variable Models (Topic Models)

The community models considered in this paper are closely related to the probabilistic topic
models (Blei, 2012), employed for text modeling and document categorization. Topic mod-
els posit the occurrence of words in a corpus of documents, through the presence of multiple
latent topics in each document. Latent Dirichlet allocation (LDA) is perhaps the most pop-
ular topic model, where the topic mixtures are assumed to be drawn from the Dirichlet
distribution. In each document, a topic mixture is drawn from the Dirichlet distribution,
and the words are drawn in a conditional independent manner, given the topic mixture.
The mixed membership community model considered in this paper can be interpreted as
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a generalization of the LDA model, where a node in the community model can function
both as a document and a word. For instance, in the directed community model, when the
outgoing links of a node are considered, the node functions as a document, and its outgoing
neighbors can be interpreted as the words occurring in that document. Similarly, when
the incoming links of a node in the network are considered, the node can be interpreted
as a word, and its incoming links, as documents containing that particular word. In par-
ticular, we establish that certain graph moments under the mixed membership model have
similar structure as the observed word moments under the LDA model. This allows us to
leverage the recent developments from Anandkumar et. al. (Anandkumar et al., 2012c,a,b)
for learning topic models, based on the method of moments. These works establish guar-
anteed learning using second- and third-order observed moments through linear algebraic
and tensor-based techniques. In particular, in this paper, we exploit the tensor power it-
eration method of Anandkumar et al. (2012b), and propose additional improvements to
obtain stronger recovery guarantees. Moreover, the sample analysis is quite different (and
more challenging) in the community setting, compared to topic models analyzed in Anand-
kumar et al. (2012c,a,b). We clearly spell out the similarities and differences between the
community model and other latent variable models in Section 4.4.

1.3.6 Lower Bounds

The work of Feldman et al. (2012) provides lower bounds on the complexity of statistical
algorithms, and shows that for cliques of size O(n1/2−δ), for any constant δ > 0, at least
nΩ(log logn) queries are needed to find the cliques. There are works relating the hardness of
finding hidden cliques and the use of higher order moment tensors for this purpose. Frieze
and Kannan (2008) relate the problem of finding a hidden clique to finding the top eigen-
vector of the third order tensor, corresponding to the maximum spectral norm. Charles
and Vempala (2009) extend the result to arbitrary rth-order tensors and the cliques have
to be size Ω(n1/r) to enable recovery from rth-order moment tensors in a n node network.
However, this problem (finding the top eigenvector of a tensor) is known to be NP-hard in
general (Hillar and Lim, 2013). Thus, tensors are useful for finding smaller hidden cliques
in network (albeit by solving a computationally hard problem). In contrast, we consider
tractable tensor decomposition through reduction to orthogonal tensors (under the scaling
requirements of (1)), and our learning method is a fast and an iterative approach based
on tensor power iterations and linear algebraic operations. Mossel et al. (2012) provide
lower bounds on the separation p− q, the edge connectivity between intra-community and
inter-community, for identifiability of communities in stochastic block models in the sparse
regime (when p, q ∼ n−1), when the number of communities is a constant k = O(1). Our
method achieves the lower bounds on separation of edge connectivity up to poly-log factors.

1.3.7 Likelihood-based Approaches to Learning MMSB

Another class of approaches for learning MMSB models are based on optimizing the ob-
served likelihood. Traditional approaches such as Gibbs sampling or expectation maximiza-
tion (EM) can be too expensive apply in practice for MMSB models. Variational approaches
which optimize the so-called evidence lower bound (Hoffman et al., 2012; Gopalan et al.,
2012), which is a lower bound on the marginal likelihood of the observed data (typically by
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applying a mean-field approximation), are efficient for practical implementation. Stochastic
versions of the variational approach provide even further gains in efficiency and are state-
of-art practical learning methods for MMSB models (Gopalan et al., 2012). However, these
methods lack theoretical guarantees; since they optimize a bound on the likelihood, they are
not guaranteed to recover the underlying communities consistently. A recent work (Celisse
et al., 2012) establishes consistency of maximum likelihood and variational estimators for
stochastic block models, which are special cases of the MMSB model. However, it is not
known if the results extend to general MMSB models. Moreover, the framework of Celisse
et al. (2012) assumes a fixed number of communities and growing network size, and pro-
vide only asymptotic consistency guarantees. Thus, they do not allow for high-dimensional
settings, where the parameters of the learning problem also grow as the observed dimen-
sionality grows. In contrast, in this paper, we allow for the number of communities to
grow, and provide precise constraints on the scaling bounds for consistent estimation under
finite samples. It is an open problem to obtain such bounds for maximum likelihood and
variational estimators. On the practical side, a recent work deploying the tensor approach
proposed in this paper by Huang et al. (2013) shows that the tensor approach is more than
an order of magnitude faster in recovering the communities than the variational approach,
is scalable to networks with millions of nodes, and also has better accuracy in recovering
the communities.

2. Community Models and Graph Moments

In the first part of section, we describe the mixed membership community model based on
Dirichlet priors for the community draws by the individuals. Then in Section 2.2, we define
and analyze the graph moments for these models.

2.1 Community Membership Models

We first introduce the special case of the popular stochastic block model, where each node
belongs to a single community.

2.1.1 Notation

We consider networks with n nodes and let [n] := {1, 2, . . . , n}. Let G be the {0, 1} adja-
cency4 matrix for the random network and let GA,B be the submatrix of G corresponding
to rows A ⊆ [n] and columns B ⊆ [n]. We consider models with k underlying (hidden)
communities. For node i, let πi ∈ Rk denote its community membership vector, i.e., the
vector is supported on the communities to which the node belongs. In the special case of
the popular stochastic block model described below, πi is a basis coordinate vector, while
the more general mixed membership model relaxes this assumption and a node can be in
multiple communities with fractional memberships. Define Π := [π1|π2| · · · |πn] ∈ Rk×n.
and let ΠA := [πi : i ∈ A] ∈ Rk×|A| denote the set of column vectors restricted to A ⊆ [n].
For a matrix M , let (M)i and (M)i denote its ith column and row respectively. For a matrix
M with singular value decomposition (SVD) M = UDV >, let (M)k−svd := UD̃V > denote
the k-rank SVD of M , where D̃ is limited to top-k singular values of M . Let M † denote

4. Our analysis can easily be extended to weighted adjacency matrices with bounded entries.
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the MoorePenrose pseudo-inverse of M . Let I(·) be the indicator function. Let Diag(v)
denote a diagonal matrix with diagonal entries given by a vector v. We use the term high
probability to mean with probability 1− n−c for any constant c > 0.

2.1.2 Stochastic Block Model (special case)

In this model, each individual is independently assigned to a single community, chosen at
random: each node i chooses community j independently with probability α̂j , for i ∈ [n], j ∈
[k], and we assign πi = ej in this case, where ej ∈ {0, 1}k is the jth coordinate basis vector.
Given the community assignments Π, every directed5 edge in the network is independently
drawn: if node u is in community i and node v is in community j (and u 6= v), then the
probability of having the edge (u, v) in the network is Pi,j . Here, P ∈ [0, 1]k×k and we
refer to it as the community connectivity matrix. This implies that given the community
membership vectors πu and πv, the probability of an edge from u to v is π>u Pπv (since
when πu = ei and πv = ej , we have π>u Pπv = Pi,j .). The stochastic model has been
extensively studied and can be learnt efficiently through various methods, e.g., spectral
clustering (McSherry, 2001), convex optimization (Chen et al., 2012). and so on. Many
of these methods rely on conditional independence assumptions of the edges in the block
model for guaranteed learning.

2.1.3 Mixed Membership Model

We now consider the extension of the stochastic block model which allows for an individual
to belong to multiple communities and yet preserves some of the convenient independence
assumptions of the block model. In this model, the community membership vector πu at
node u is a probability vector, i.e.,

∑
i∈[k] πu(i) = 1, for all u ∈ [n]. Given the commu-

nity membership vectors, the generation of the edges is identical to the block model: given
vectors πu and πv, the probability of an edge from u to v is π>u Pπv, and the edges are inde-
pendently drawn. This formulation allows for the nodes to be in multiple communities, and
at the same time, preserves the conditional independence of the edges, given the community
memberships of the nodes.

2.1.4 Dirichlet Prior for Community Membership

The only aspect left to be specified for the mixed membership model is the distribution
from which the community membership vectors Π are drawn. We consider the popular
setting of Airoldi et al. (2008), where the community vectors {πu} are i.i.d. draws from the
Dirichlet distribution, denoted by Dir(α), with parameter vector α ∈ Rk>0. The probability
density function of the Dirichlet distribution is given by

P[π] =

∏k
i=1 Γ(αi)

Γ(α0)

k∏
i=1

παi−1
i , π ∼ Dir(α), α0 :=

∑
i

αi, (6)

where Γ(·) is the Gamma function and the ratio of the Gamma function serves as the
normalization constant.

5. We limit our discussion to directed networks in this paper, but note that the results also hold for undi-
rected community models, where P is a symmetric matrix, and an edge (u, v) is formed with probability
π>u Pπv = π>v Pπu.
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The Dirichlet distribution is widely employed for specifying priors in Bayesian statistics,
e.g., latent Dirichlet allocation (Blei et al., 2003). The Dirichlet distribution is the conjugate
prior of the multinomial distribution which makes it attractive for Bayesian inference.

Let α̂ denote the normalized parameter vector α/α0, where α0 :=
∑

i αi. In particular,
note that α̂ is a probability vector:

∑
i α̂i = 1. Intuitively, α̂ denotes the relative expected

sizes of the communities (since E[n−1
∑

u∈[n] πu[i]] = α̂i). Let α̂max be the largest entry in α̂,
and α̂min be the smallest entry. Our learning guarantees will depend on these parameters.

The stochastic block model is a limiting case of the mixed membership model when the
Dirichlet parameter is α = α0 · α̂, where the probability vector α̂ is held fixed and α0 → 0.
In the other extreme when α0 → ∞, the Dirichlet distribution becomes peaked around a
single point, for instance, if αi ≡ c and c → ∞, the Dirichlet distribution is peaked at
k−1 · ~1, where ~1 is the all-ones vector. Thus, the parameter α0 serves as a measure of the
average sparsity of the Dirichlet draws or equivalently, of how concentrated the Dirichlet
measure is along the different coordinates. This in effect, controls the extent of overlap
among different communities.

2.1.5 Sparse Regime of Dirichlet Distribution

When the Dirichlet parameter vector satisfies6 αi < 1, for all i ∈ [k], the Dirichlet dis-
tribution Dir(α) generates “sparse” vectors with high probability;7; see Telgarsky (2012)
(and in the extreme case of the block model where α0 → 0, it generates 1-sparse vectors).
Many real-world settings involve sparse community membership and the total number of
communities is typically much larger than the extent of membership of a single individual,
e.g., hobbies/interests of a person, university/company networks that a person belongs to,
the set of transcription factors regulating a gene, and so on. Our learning guarantees are
limited to the sparse regime of the Dirichlet model.

2.2 Graph Moments under Mixed Membership Models

Our approach for learning a mixed membership community model relies on the form of the
graph moments8 under the mixed membership model. We now describe the specific graph
moments used by our learning algorithm (based on 3-star and edge counts) and provide
explicit forms for the moments, assuming draws from a mixed membership model.

2.2.1 Notation

Recall that G denotes the adjacency matrix and that GX,A denotes the submatrix corre-
sponding to edges going from X to A. Recall that P ∈ [0, 1]k×k denotes the community
connectivity matrix. Define

F := Π>P> = [π1|π2| · · · |πn]>P>. (7)

6. The assumption that the Dirichlet distribution be in the sparse regime is not strictly needed. Our results
can be extended to general Dirichlet distributions, but with worse scaling requirements on the network
size n for guaranteed learning.

7. Roughly the number of entries in π exceeding a threshold τ is at most O(α0 log(1/τ)) with high proba-
bility, when π ∼ Dir(α).

8. We interchangeably use the term first order moments for edge counts and third order moments for 3-star
counts.
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u v w
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Figure 1: Our moment-based learning algorithm uses 3-star count tensor from set X to
sets A,B,C (and the roles of the sets are interchanged to get various estimates).
Specifically, T is a third order tensor, where T(u, v, w) is the normalized count of
the 3-stars with u, v, w as leaves over all x ∈ X.

For a subset A ⊆ [n] of individuals, let FA ∈ R|A|×k denote the submatrix of F corresponding
to nodes in A, i.e., FA := Π>AP

>. We will subsequently show that FA is linear map which
takes any community vector πi as input and outputs the corresponding neighborhood vector
G>i,A in expectation.

Our learning algorithm uses moments up to the third-order, represented as a tensor. A
third-order tensor T is a three-dimensional array whose (p, q, r)-th entry denoted by Tp,q,r.
The symbol ⊗ denotes the standard Kronecker product: if u, v, w are three vectors, then

(u⊗ v ⊗ w)p,q,r := up · vq · wr. (8)

A tensor of the form u ⊗ v ⊗ w is referred to as a rank-one tensor. The decomposition of
a general tensor into a sum of its rank-one components is referred to as canonical polyadic
(CP) decomposition Kolda and Bader (2009). We will subsequently see that the graph
moments can be expressed as a tensor and that the CP decomposition of the graph-moment
tensor yields the model parameters and the community vectors under the mixed membership
community model.

2.2.2 Graph Moments under Stochastic Block Model

We first analyze the graph moments in the special case of a stochastic block model (i.e., α0 =∑
i αi → 0 in the Dirichlet prior in (6)) and then extend it to general mixed membership

model. We provide explicit expressions for the graph moments corresponding to edge counts
and 3-star counts. We later establish in Section 3 that these moments are sufficient to learn
the community memberships of the nodes and the model parameters of the block model.

2.2.3 3-star Counts

The primary quantity of interest is a third-order tensor which counts the number of 3-stars.
A 3-star is a star graph with three leaves {a, b, c} and we refer to the internal node x of the
star as its “head”, and denote the structure by x→ {a, b, c} (see Figure 1). We partition the
network into four9 parts and consider 3-stars such that each node in the 3-star belongs to a
different partition. This is necessary to obtain a simple form of the moments, based on the
conditional independence assumptions of the block model, see Proposition 2. Specifically,

9. For sample complexity analysis, we require dividing the graph into more than four partitions to deal
with statistical dependency issues, and we outline it in Section 3.
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consider10 a partition A,B,C,X of the network. We count the number of 3-stars from X
to A,B,C and our quantity of interest is

TX→{A,B,C} :=
1

|X|
∑
i∈X

[G>i,A ⊗G>i,B ⊗G>i,C ], (9)

where ⊗ is the Kronecker product, defined in (8) and Gi,A is the row vector supported on
the set of neighbors of i belonging to set A. T ∈ R|A|×|B|×|C| is a third order tensor, and
an element of the tensor is given by

TX→{A,B,C}(a, b, c) =
1

|X|
∑
x∈X

G(x, a)G(x, b)G(x, c), ∀a ∈ A, b ∈ B, c ∈ C, (10)

which is the normalized count of the number of 3-stars with leaves a, b, c such that its “head”
is in set X.

We now relate the tensor TX→{A,B,C} to the parameters of the stochastic block model,
viz., the community connectivity matrix P and the community probability vector α̂, where
α̂i is the probability of choosing community i.

Proposition 2 (Moments in Stochastic Block Model) Given partitions A,B,C,X, and
F := Π>P>, where P is the community connectivity matrix and Π is the matrix of commu-
nity membership vectors, we have

E[G>X,A|ΠA,ΠX ] = FAΠX , (11)

E[TX→{A,B,C} |ΠA,ΠB,ΠC ] =
∑
i∈[k]

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (12)

where α̂i is the probability for a node to select community i.

Remark: In Equation (11), we see that the edge generation occurs under a linear model,
and more precisely, the matrix FA ∈ R|A|×k is a linear map which takes a community vector
πi ∈ Rk to a neighborhood vector G>i,A ∈ R|A| in expectation.

Remark: (Identifiability under third order moments)) Note the form of the 3-star count
tensor T in (12). It provides a CP decomposition of T since each term in the summa-
tion, viz., α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, is a rank one tensor. Thus, we can learn the matrices
FA, FB, FC and the vector α̂ through CP decomposition of tensor T. Once these parameters
are learnt, learning the communities is straight-forward under exact moments: by exploiting
(11), we find ΠX as

ΠX = F †A · E[G>X,A|ΠA,ΠX ].

Similarly, we can consider another tensor consisting of 3-stars from A to X,B,C, and
obtain matrices FX , FB and FC through a CP decomposition, and so on. Once we obtain
matrices F and Π for the entire set of nodes in this manner, we can obtain the community
connectivity matrix P , since F := Π>P>. Thus, in principle, we are able to learn all the

10. To establish our theoretical guarantees, we assume that the partitions A,B,C,X are randomly chosen
and are of size Θ(n).
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model parameters (α̂ and P ) and the community membership matrix Π under the stochas-
tic block model, given exact moments. This establishes identifiability of the model given
moments up to third order and forms a high-level approach for learning the communities.
When only samples are available, we establish that the empirical versions are close to the
exact moments considered above, and we modify the basic learning approach to obtain robust
guarantees. See Section 3 for details.
Remark: (Significance of conditional independence relationships) The main property ex-
ploited in proving the tensor form in (12) is the conditional-independence assumption under
the stochastic block model: the realization of the edges in each 3-star, say in x→ {a, b, c}, is
conditionally independent given the community membership vector πx, when x 6= a 6= b 6= c.
This is because the community membership vectors Π are assumed to be drawn independently
at the different nodes and the edges are drawn independently given the community vectors.

Considering 3-stars from X to A,B,C where X,A,B,C form a partition ensures that
this conditional independence is satisfied for all the 3-stars in tensor T.

Proof: Recall that the probability of an edge from u to v given πu, πv is

E[Gu,v|πu, πv] = π>u Pπv = π>v P
>πu = Fvπu,

and E[GX,A|ΠA,ΠX ] = Π>XPΠA = Π>XF
>
A and thus (11) holds. For the tensor form, first

consider an element of the tensor, with a ∈ A, b ∈ B, c ∈ C,

E
[
TX→{A,B,C}(a, b, c)|πa, πb, πc, πx

]
=

1

|X|
∑
x∈X

Faπx · Fbπx · Fcπx,

The equation follows from the conditional-independence assumption of the edges (assuming
a 6= b 6= c). Now taking expectation over the nodes in X, we have

E
[
TX→{A,B,C}(a, b, c)|πa, πb, πc

]
=

1

|X|
∑
x∈X

E [Faπx · Fbπx · Fcπx|πa, πb, πc]

= E [Faπ · Fbπ · Fcπ|πa, πb, πc]

=
∑
j∈[k]

α̂j(Fa)j · (Fb)j · (Fc)j ,

where the last step follows from the fact that π = ej with probability α̂j and the result
holds when x 6= a, b, c. Recall that (Fa)j denotes the jth column of Fa (since Faej = (Fa)j).
Collecting all the elements of the tensor, we obtain the desired result. �

2.2.4 Graph Moments under Mixed Membership Dirichlet Model

We now analyze the graph moments for the general mixed membership Dirichlet model.
Instead of the raw moments (i.e., edge and 3-star counts), we consider modified moments
to obtain similar expressions as in the case of the stochastic block model.

Let µX→A ∈ R|A| denote a vector which gives the normalized count of edges from X to
A:

µX→A :=
1

|X|
∑
i∈X

[G>i,A]. (13)
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We now define a modified adjacency matrix11 Gα0
X,A as

Gα0
X,A :=

(√
α0 + 1GX,A − (

√
α0 + 1− 1)~1µ>X→A

)
. (14)

In the special case of the stochastic block model (α0 → 0), Gα0
X,A = GX,A is the submatrix

of the adjacency matrix G. Similarly, we define modified third-order statistics,

Tα0

X→{A,B,C} := (α0 + 1)(α0 + 2) TX→{A,B,C}+2α2
0 µX→A ⊗ µX→B ⊗ µX→C

− α0(α0 + 1)

|X|
∑
i∈X

[
G>i,A ⊗G>i,B ⊗ µX→C +G>i,A ⊗ µX→B ⊗G>i,C + µX→A ⊗G>i,B ⊗G>i,C

]
,

(15)

and it reduces to (a scaled version of) the 3-star count TX→{A,B,C} defined in (9) for the
stochastic block model (α0 → 0). The modified adjacency matrix and the 3-star count
tensor can be viewed as a form of “centering” of the raw moments which simplifies the
expressions for the moments. The following relationships hold between the modified graph
moments Gα0

X,A, Tα0 and the model parameters P and α̂ of the mixed membership model.

Proposition 3 (Moments in Mixed Membership Model) Given partitions A,B,C,X
and Gα0

X,A and Tα0, as in (14) and (15), normalized Dirichlet concentration vector α̂, and

F := Π>P>, where P is the community connectivity matrix and Π is the matrix of commu-
nity memberships, we have

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX , (16)

E[Tα0

X→{A,B,C} |ΠA,ΠB,ΠC ] =

k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i, (17)

where (FA)i corresponds to ith column of FA and ΨX relates to the community membership
matrix ΠX as

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
~1>

)
.

Moreover, we have that
|X|−1EΠX [ΨXΨ>X ] = I. (18)

Remark: The 3-star count tensor Tα0 is carefully chosen so that the CP decomposition of
the tensor directly yields the matrices FA, FB, FC and α̂i, as in the case of the stochastic block
model. Similarly, the modified adjacency matrix (Gα0

X,A)> is carefully chosen to eliminate

second-order correlation in the Dirichlet distribution and we have that |X|−1EΠX [ΨΨ>] =
I is the identity matrix. These properties will be exploited by our learning algorithm in
Section 3.

11. To compute the modified moments Gα0 , and Tα0 , we need to know the value of the scalar α0 :=
∑
i αi,

which is the concentration parameter of the Dirichlet distribution and is a measure of the extent of
overlap between the communities. We assume its knowledge here.
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Remark: Recall that α0 quantifies the extent of overlap among the communities. The
computation of the modified moment Tα0 requires the knowledge of α0, which is assumed to
be known. Since this is a scalar quantity, in practice, we can easily tune this parameter via
cross validation.

Proof: The proof is on lines of Proposition 2 for stochastic block models (α0 → 0)
but more involved due to the form of Dirichlet moments. Recall E[G>i,A|πi,ΠA] = FAπi
for a mixed membership model, and µX→A := 1

|X|
∑

i∈X G
>
i,A, therefore E[µX→A|ΠA,ΠX ] =

FA

(
1
|X|
∑

i∈X πi

)
~1>. Equation (16) follows directly. For Equation (18), we note the Dirich-

let moment, E[ππ>] = 1
α0+1 Diag(α̂) + α0

α0+1 α̂α̂
>, when π ∼ Dir(α) and

|X|−1E[ΨXΨ>X ] = Diag(α̂−1/2)
[
(α0 + 1)E[ππ>] + (−2

√
α0 + 1(

√
α0 + 1− 1)

+(
√
α0 + 1− 1)2)E[π]E[π]>

]
Diag(α̂−1/2)

= Diag(α̂−1/2)
(

Diag(α̂) + α0α̂α̂
> + (−α0)α̂α̂>

)
Diag(α̂−1/2)

= I.

On lines of the proof of Proposition 2 for the block model, the expectation in (17) involves
multi-linear map of the expectation of the tensor products π ⊗ π ⊗ π among other terms.
Collecting these terms, we have that

(α0 + 1)(α0 + 2)E[π ⊗ π ⊗ π]− (α0)(α0 + 1)(E[π ⊗ π ⊗ E[π]]

+E[π ⊗ E[π]⊗ π] + E[E[π]⊗ π ⊗ π]) + 2α2
0E[π]⊗ E[π]⊗ E[π]

is a diagonal tensor, in the sense that its (p, p, p)-th entry is α̂p, and its (p, q, r)-th entry is
0 when p, q, r are not all equal. With this, we have (17). �

Note the nearly identical forms of the graph moments for the stochastic block model in
(11), (12) and for the general mixed membership model in (16), (17). In other words, the
modified moments Gα0

X,A and Tα0 have similar relationships to underlying parameters as the
raw moments in the case of the stochastic block model. This enables us to use a unified
learning approach for the two models, outlined in the next section.

3. Algorithm for Learning Mixed Membership Models

The simple form of the graph moments derived in the previous section is now utilized to
recover the community vectors Π and model parameters P, α̂ of the mixed membership
model. The method is based on the so-called tensor power method, used to obtain a tensor
decomposition. We first outline the basic tensor decomposition method below and then
demonstrate how the method can be adapted to learning using the graph moments at hand.
We first analyze the simpler case when exact moments are available in Section 3.2 and then
extend the method to handle empirical moments computed from the network observations
in Section 3.3.
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3.1 Overview of Tensor Decomposition through Power Iterations

In this section, we review the basic method for tensor decomposition based on power iter-
ations for a special class of tensors, viz., symmetric orthogonal tensors. Subsequently, in
Section 3.2 and 3.3, we modify this method to learn the mixed membership model from
graph moments, described in the previous section. For details on the tensor power method,
refer to Anandkumar et al. (2012a); Kolda and Mayo (2011).

Recall that a third-order tensor T is a three-dimensional array and we use Tp,q,r to
denote the (p, q, r)-th entry of the tensor T . The standard symbol ⊗ is used to denote the
Kronecker product, and (u ⊗ v ⊗ w) is a rank one tensor. The decomposition of a tensor
into its rank one components is called the CP decomposition.

3.1.1 Multi-linear Maps

We can view a tensor T ∈ Rd×d×d as a multilinear map in the following sense: for a set of
matrices {Vi ∈ Rd×mi : i ∈ [3]}, the (i1, i2, i3)-th entry in the three-way array representation
of T (V1, V2, V3) ∈ Rm1×m2×m3 is

[T (V1, V2, V3)]i1,i2,i3 :=
∑

j1,j2,j3∈[d]

Tj1,j2,j3 [V1]j1,i1 [V2]j2,i2 [V3]j3,i3 .

The term multilinear map arises from the fact that the above map is linear in each of the
coordinates, e.g., if we replace V1 by aV1 +bW1 in the above equation, where W1 is a matrix
of appropriate dimensions, and a, b are any scalars, the output is a linear combination of
the outputs under V1 and W1 respectively. We will use the above notion of multi-linear
transforms to describe various tensor operations. For instance, T (I, I, v) yields a matrix,
T (I, v, v), a vector, and T (v, v, v), a scalar.

3.1.2 Symmetric Tensors and Orthogonal Decomposition

A special class of tensors are the symmetric tensors T ∈ Rd×d×d which are invariant to
permutation of the array indices. Symmetric tensors have CP decomposition of the form

T =
∑
i∈[r]

λivi ⊗ vi ⊗ vi =
∑
i∈[r]

λiv
⊗3
i , (19)

where r denotes the tensor CP rank and we use the notation v⊗3
i := vi ⊗ vi ⊗ vi. It is

convenient to first analyze methods for decomposition of symmetric tensors and we then
extend them to the general case of asymmetric tensors.

Further, a sub-class of symmetric tensors are those which possess a decomposition into
orthogonal components, i.e., the vectors vi ∈ Rd are orthogonal to one another in the
above decomposition in (19) (without loss of generality, we assume that vectors {vi} are
orthonormal in this case). An orthogonal decomposition implies that the tensor rank r ≤ d
and there are tractable methods for recovering the rank-one components in this setting. We
limit ourselves to this setting in this paper.
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3.1.3 Tensor Eigen Analysis

For symmetric tensors T possessing an orthogonal decomposition of the form in (19), each
pair (λi, vi), for i ∈ [r], can be interpreted as an eigen-pair for the tensor T , since

T (I, vi, vi) =
∑
j∈[r]

λj 〈vi, vj〉2 vj = λivi, ∀i ∈ [r],

due to the fact that 〈vi, vj〉 = δi,j . Thus, the vectors {vi}i∈[r] can be interpreted as fixed
points of the map

v 7→ T (I, v, v)

‖T (I, v, v)‖
, (20)

where ‖ · ‖ denotes the spectral norm (and ‖T (I, v, v)‖ is a vector norm), and is used to
normalize the vector v in (20).

3.1.4 Basic Tensor Power Iteration Method

A straightforward approach to computing the orthogonal decomposition of a symmetric
tensor is to iterate according to the fixed-point map in (20) with an arbitrary initialization
vector. This is referred to as the tensor power iteration method. Additionally, it is known
that the vectors {vi}i∈[r] are the only stable fixed points of the map in (20). In other words,
the set of initialization vectors which converge to vectors other than {vi}i∈[r] are of measure
zero. This ensures that we obtain the correct set of vectors through power iterations and
that no spurious answers are obtained. See Anandkumar et al. (2012b, Thm. 4.1) for details.
Moreover, after an approximately fixed point is obtained (after many power iterations), the
estimated eigen-pair can be subtracted out (i.e., deflated) and subsequent vectors can be
similarly obtained through power iterations. Thus, we can obtain all the stable eigen-pairs
{λi, vi}i∈[r] which are the components of the orthogonal tensor decomposition. The method
needs to be suitably modified when the tensor T is perturbed (e.g., as in the case when
empirical moments are used) and we discuss it in Section 3.3.

3.2 Learning Mixed Membership Models under Exact Moments

We first describe the learning approach when exact moments are available. In Section 3.3,
we suitably modify the approach to handle perturbations, which are introduced when only
empirical moments are available.

We now employ the tensor power method described above to obtain a CP decomposition
of the graph moment tensor Tα0 in (15). We first describe a “symmetrization” procedure
to convert the graph moment tensor Tα0 to a symmetric orthogonal tensor through a multi-
linear transformation of Tα0 . We then employ the power method to obtain a symmetric
orthogonal decomposition. Finally, the original CP decomposition is obtained by revers-
ing the multi-linear transform of the symmetrization procedure. This yields a guaranteed
method for obtaining the decomposition of graph moment tensor Tα0 under exact moments.
We note that this symmetrization approach has been earlier employed in other contexts,
e.g., for learning hidden Markov models (Anandkumar et al., 2012b, Sec. 3.3).
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3.2.1 Reduction of the Graph-moment Tensor to Symmetric Orthogonal
Form (Whitening)

Recall from Proposition 3 that the modified 3-star count tensor Tα0 has a CP decomposition
as

E[Tα0 |ΠA,ΠB,ΠC ] =

k∑
i=1

α̂i(FA)i ⊗ (FB)i ⊗ (FC)i.

We now describe a symmetrization procedure to convert Tα0 to a symmetric orthogonal
tensor through a multi-linear transformation using the modified adjacency matrix Gα0 ,
defined in (14). Consider the singular value decomposition (SVD) of the modified adjacency
matrix Gα0 under exact moments:

|X|−1/2E[(Gα0
X,A)>|Π] = UADAV

>
A .

Define WA := UAD
−1
A , and similarly define WB and WC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

RA,B :=
1

|X|
W>B E[(Gα0

X,B)>|Π] · E[(Gα0
X,A)|Π]WA, W̃B := WBRA,B, (21)

and similarly define W̃C . We establish that a multilinear transformation (as defined in
(3.1.1)) of the graph-moment tensor Tα0 using matrices WA, W̃B, and W̃C results in a
symmetric orthogonal form.

Lemma 4 (Orthogonal Symmetric Tensor) Assume that the matrices FA, FB, FC and
ΠX have rank k, where k is the number of communities. We have an orthogonal sym-
metric tensor form for the modified 3-star count tensor Tα0 in (15) under a multilinear
transformation using matrices WA, W̃B, and W̃C :

E[Tα0(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ] =
∑
i∈[k]

λi(Φ)⊗3
i ∈ Rk×k×k, (22)

where λi := α̂−0.5
i and Φ ∈ Rk×k is an orthogonal matrix, given by

Φ := W>A FA Diag(α̂0.5). (23)

Remark: Note that the matrix WA orthogonalizes FA under exact moments, and is
referred to as a whitening matrix. Similarly, the matrices W̃B = RA,BWB and W̃C =
RA,CWC consist of whitening matrices WB and WC , and in addition, the matrices RA,B and
RA,C serve to symmetrize the tensor. We can interpret {λi, (Φ)i}i∈[k] as the stable eigen-
pairs of the transformed tensor (henceforth, referred to as the whitened and symmetrized
tensor).
Remark: The full rank assumption on matrix FA = Π>AP

> ∈ R|A|×k implies that |A| ≥ k,
and similarly |B|, |C|, |X| ≥ k. Moreover, we require the community connectivity matrix
P ∈ Rk×k to be of full rank12 (which is a natural non-degeneracy condition). In this case,

12. In the work of McSherry (2001), where spectral clustering for stochastic block models is analyzed, rank
deficient P is allowed as long as the neighborhood vectors generated by any pair of communities are
sufficiently different. On the other hand, our method requires P to be full rank. We argue that this is
a mild restriction since we allow for mixed memberships while McSherry (2001) limit to the stochastic
block model.
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we can reduce the graph-moment tensor Tα0 to a k-rank orthogonal symmetric tensor, which
has a unique decomposition. This implies that the mixed membership model is identifiable
using 3-star and edge count moments, when the network size n = |A|+ |B|+ |C|+ |X| ≥ 4k,
matrix P is full rank and the community membership matrices ΠA,ΠB,ΠC ,ΠX each have
rank k. On the other hand, when only empirical moments are available, roughly, we require
the network size n = Ω(k2(α0 + 1)2) (where α0 :=

∑
i αi is related to the extent of overlap

between the communities) to provide guaranteed learning of the community membership and
model parameters. See Section 4 for a detailed sample analysis.
Proof: Recall that the modified adjacency matrix Gα0 satisfies

E[(Gα0
X,A)>|ΠA,ΠX ] = FA Diag(α̂1/2)ΨX ,

ΨX := Diag(α̂−1/2)

(
√
α0 + 1ΠX − (

√
α0 + 1− 1)

(
1

|X|
∑
i∈X

πi

)
~1>

)
.

From the definition of ΨX above, we see that it has rank k when ΠX has rank k. Using the
Sylvester’s rank inequality, we have that the rank of FA Diag(α̂1/2)ΨX is at least 2k−k = k.
This implies that the whitening matrix WA also has rank k. Notice that

|X|−1W>A E[(Gα0
X,A)>|Π] · E[(Gα0

X,A)|Π]WA = D−1
A U>AUAD

2
AU
>
AUAD

−1
A = I ∈ Rk×k,

or in other words, |X|−1MM> = I, where M := W>A FA Diag(α̂1/2)ΨX . We now have that

I = |X|−1EΠX

[
MM>

]
= |X|−1W>A FA Diag(α̂1/2)E[ΨXΨ>X ] Diag(α̂1/2)F>AWA

= W>A FA Diag(α̂)F>AWA,

since |X|−1EΠX [ΨXΨ>X ] = I from (18), and we use the fact that the sets A and X do not
overlap. Thus, WA whitens FA Diag(α̂1/2) under exact moments (up on taking expectation
over ΠX) and the columns of W>A FA Diag(α̂1/2) are orthonormal. Now note from the
definition of W̃B that

W̃>B E[(Gα0
X,B)>|Π] = W>A E[(Gα0

X,A)>|Π],

since WB satisfies
|X|−1W>B E[(Gα0

X,B)>|Π] · E[(Gα0
X,B)|Π]WB = I,

and similar result holds for W̃C . The final result in (22) follows by taking expectation of
tensor Tα0 over ΠX . �

3.2.2 Overview of the Learning Approach under Exact Moments

With the above result in place, we are now ready to describe the high-level approach for
learning the mixed membership model under exact moments. First, symmetrize the graph-
moment tensor Tα0 as described above and then apply the tensor power method described
in the previous section. This enables us to obtain the vector of eigenvalues λ := α̂−1/2 and
the matrix of eigenvectors Φ = W>A FA Diag(α̂0.5) using tensor power iterations. We can
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then recover the community membership vectors of set Ac (i.e., nodes not in set A) under
exact moments as

ΠAc ← Diag(λ)−1Φ>W>A E[G>Ac,A|Π],

since E[G>Ac,A|Π] = FAΠAc (since A and Ac do not overlap) and Diag(λ)−1Φ>W>A =

Diag(α̂)F>AWAW
>
A under exact moments. In order to recover the community member-

ship vectors of set A, viz., ΠA, we can use the edge-set GA,B. Once all the community
membership vectors Π are obtained, we can obtain the community connectivity matrix P ,
using the relationship: Π>PΠ = E[G|Π] and noting that we assume Π to be of rank k.
Thus, we are able to learn the community membership vectors Π and the model parameters
α̂ and P of the mixed membership model using edge counts and the 3-star count tensor.
We now describe modifications to this approach to handle empirical moments.

3.3 Learning Algorithm under Empirical Moments

In the previous section, we explored a tensor-based approach for learning mixed membership
model under exact moments. However, in practice, we only have samples (i.e., the observed
network), and the method needs to be robust to perturbations when empirical moments are
employed.

Algorithm 1 {Π̂, P̂ , α̂} ← LearnMixedMembership(G, k, α0, N, τ)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, N is the number of iterations for the tensor power
method, and τ is used for thresholding the estimated community membership vectors,
specified in (29) in assumption A5. Let Ac := [n] \A denote the set of nodes not in A.

Output: Estimates of the community membership vectors Π ∈ Rn×k, community connec-
tivity matrix P ∈ [0, 1]k×k, and the normalized Dirichlet parameter vector α̂.
Partition the vertex set [n] into 5 parts X, Y , A, B, C.
Compute moments Gα0

X,A, Gα0
X,B, Gα0

X,C , Tα0

Y→{A,B,C} using (14) and (15).

{Π̂, α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G,N, τ).

Define Q̂ such that its i-th row is Q̂i := (α0 + 1) Π̂i

|Π̂i|1
− α0

n
~1>. {We will establish that

Q̂ ≈ (Π†)> under conditions A1-A5.}
Estimate P̂ ← Q̂GQ̂>. {Recall that E[G] = Π>PΠ in our model.}
Return Π̂, P̂ , α̂

3.3.1 Pre-processing Step: Partitioning

In the previous section, we partitioned the nodes into four sets A,B,C,X for learning
under exact moments. However, we require more partitions under empirical moments to
avoid statistical dependency issues and obtain stronger reconstruction guarantees. We now
divide the network into five non-overlapping sets A,B,C,X, Y . The set X is employed to
compute whitening matrices ŴA, ŴB and ŴC , described in detail subsequently, the set Y
is employed to compute the 3-star count tensor Tα0 and sets A,B,C contain the leaves of
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Procedure 1 {Π̂, α̂} ← LearnPartitionCommunity(Gα0
X,A, Gα0

X,B, Gα0
X,C , Tα0

Y→{A,B,C}, G,

N , τ)

Input: Require modified adjacency submatrices Gα0
X,A, Gα0

X,B, Gα0
X,C , 3-star count tensor

Tα0

Y→{A,B,C}, adjacency matrixG, number of iterationsN for the tensor power method and

threshold τ for thresholding estimated community membership vectors. Let Thres(A, τ)
denote the element-wise thresholding operation using threshold τ , i.e., Thres(A, τ)i,j =
Ai,j if Ai,j ≥ τ and 0 otherwise. Let ei denote basis vector along coordinate i.

Output: Estimates of Π and α̂.
Compute rank-k SVD: (|X|−1/2Gα0

X,A)>k−svd = UADAV
>
A and compute whitening matrices

ŴA := UAD
−1
A . Similarly, compute ŴB, ŴC and R̂AB, R̂AC using (24).

Compute whitened and symmetrized tensor T ← Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC).

{λ̂, Φ̂} ←TensorEigen(T, {Ŵ>AG>i,A}i/∈A, N). {Φ̂ is a k×k matrix with each columns being

an estimated eigenvector and λ̂ is the vector of estimated eigenvalues.}
Π̂Ac ← Thres(Diag(λ̂)−1Φ̂>Ŵ>AG

>
Ac,A , τ) and α̂i ← λ̂−2

i , for i ∈ [k].

Π̂A ← Thres(Diag(λ̂)−1Φ̂>R̂>ABŴ
>
BG

>
A,B , τ).

Return Π̂ and α̂.

the 3-stars under consideration. The roles of the sets can be interchanged to obtain the
community membership vectors of all the sets.

3.3.2 Pre-processing Step: Whitening

The whitening procedure is along the same lines as described in the previous section, except
that now empirical moments are used. Specifically, consider the k-rank singular value
decomposition (SVD) of the modified adjacency matrix Gα0 defined in (14),

(|X|−1/2Gα0
X,A)>k−svd = UADAV

>
A .

Define ŴA := UAD
−1
A , and similarly define ŴB and ŴC using the corresponding matrices

Gα0
X,B and Gα0

X,C respectively. Now define

R̂A,B :=
1

|X|
Ŵ>B (Gα0

X,B)>k−svd · (G
α0
X,A)k−svdŴA, (24)

and similarly define R̂AC . The whitened and symmetrized graph-moment tensor is now
computed as

Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC),

where Tα0 is given by (15) and the multi-linear transformation of a tensor is defined in
(3.1.1).

3.3.3 Modifications to the Tensor Power Method

Recall that under exact moments, the stable eigen-pairs of a symmetric orthogonal tensor
can be computed in a straightforward manner through the basic power iteration method in
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(20), along with the deflation procedure. However, this is not sufficient to get good recon-
struction guarantees under empirical moments. We now propose a robust tensor method,
detailed in Procedure 2. The main modifications involve: (i) efficient initialization and
(ii) adaptive deflation, which are detailed below. Employing these modifications allows us
to tolerate a far greater perturbation of the third order moment tensor, than the basic
tensor power procedure employed in Anandkumar et al. (2012b). See remarks following
Theorem 11 in Appendix A for the precise comparison.

3.3.4 Modification 1: Efficient Initialization

Recall that the basic tensor power method incorporates generic initialization vectors and
this procedure recovers all the stable eigenvectors correctly (except for initialization vectors
over a set of measure zero). However, under empirical moments, we have a perturbed tensor,
and here, it is advantageous to instead employ specific initialization vectors. For instance,
to obtain one of the eigenvectors (Φ)i, it is advantageous to initialize with a vector in the
neighborhood of (Φ)i. This not only reduces the number of power iterations required to
converge (approximately), but more importantly, this makes the power method more robust
to perturbations. See Theorem 11 in Appendix A.1 for a detailed analysis quantifying the
relationship between initialization vectors, tensor perturbation and the resulting guarantees
for recovery of the tensor eigenvectors.

For a mixed membership model in the sparse regime, recall that the community member-
ship vectors Π are sparse (with high probability). Under this regime of the model, we note
that the whitened neighborhood vectors contain good initializers for the power iterations.
Specifically, in Procedure 2, we initialize with the whitened neighborhood vectors Ŵ>AG

>
i,A,

for i /∈ A. The intuition behind this is as follows: for a suitable choice of parameters (such
as the scaling of network size n with respect to the number of communities k), we expect
neighborhood vectors G>i,A to concentrate around their mean values, viz., , FAπi. Since πi
is sparse (w.h.p) for the model regime under consideration, this implies that there exist
vectors Ŵ>A FAπi, for i ∈ Ac, which concentrate (w.h.p) on only along a few eigen-directions
of the whitened tensor, and hence, serve as an effective initializer.

3.3.5 Modification 2: Adaptive Deflation

Recall that in the basic power iteration procedure, we can obtain the eigen-pairs one af-
ter another through simple deflation: subtracting the estimates of the current eigen-pairs
and running the power iterations again to obtain new eigenvectors. However, it turns out
that we can establish better theoretical guarantees (in terms of greater robustness) when
we adaptively deflate the tensor in each power iteration. In Procedure 2, among the esti-
mated eigen-pairs, we only deflate those which “compete” with the current estimate of the

power iteration. In other words, if the vector in the current iteration θ
(τ)
t has a significant

projection along the direction of an estimated eigen-pair φj , i.e.,

|λj
〈
θ

(τ)
t , φj

〉
| > ξ,

for some threshold ξ, then the eigen-pair is deflated; otherwise the eigenvector φj is not
deflated. This allows us to carefully control the error build-up for each estimated eigenpair
in our analysis. Intuitively, if an eigenvector does not have a good correlation with the
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current estimate, then it does not interfere with the update of the current vector, while if
the eigenvector has a good correlation, then it is pertinent that it be deflated so as to dis-
courage convergence in the direction of the already estimated eigenvector. See Theorem 11
in Appendix A.1 for details.

Finally, we note that stabilization, as proposed by Kolda and Mayo (2011) for general
tensor eigen-decomposition (as opposed to orthogonal decomposition in this paper), can be
effective in improving convergence, especially on real data, and we defer its detailed analysis
to future work.

Procedure 2 {λ,Φ} ←TensorEigen(T, {vi}i∈[L], N)

Input: Tensor T ∈ Rk×k×k, L initialization vectors {vi}i∈L, number of iterations N .
Output: the estimated eigenvalue/eigenvector pairs {λ,Φ}, where λ is the vector of eigen-

values and Φ is the matrix of eigenvectors.
for i = 1 to k do

for τ = 1 to L do
θ0 ← vτ .
for t = 1 to N do
T̃ ← T .
for j = 1 to i− 1 (when i > 1) do

if |λj
〈
θ

(τ)
t , φj

〉
| > ξ then

T̃ ← T̃ − λjφ⊗3
j .

end if
end for

Compute power iteration update θ
(τ)
t :=

T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)

‖T̃ (I,θ
(τ)
t−1,θ

(τ)
t−1)‖

end for
end for
Let τ∗ := arg maxτ∈L{T̃ (θ

(τ)
N , θ

(τ)
N , θ

(τ)
N )}.

Do N power iteration updates starting from θ
(τ∗)
N to obtain eigenvector estimate φi,

and set λi := T̃ (φi, φi, φi).
end for
return the estimated eigenvalue/eigenvectors (λ,Φ).

3.3.6 Reconstruction after Tensor Power Method

Recall that previously in Section 3.2, when exact moments are available, estimating the
community membership vectors Π is straightforward, once we recover all the stable tensor
eigen-pairs. However, in case of empirical moments, we can obtain better guarantees with
the following modification: the estimated community membership vectors Π are further
subject to thresholding so that the weak values are set to zero. Since we are limiting
ourselves to the regime of the mixed membership model, where the community vectors
Π are sparse (w.h.p), this modification strengthens our reconstruction guarantees. This
thresholding step is incorporated in Algorithm 1.
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Moreover, recall that under exact moments, estimating the community connectivity
matrix P is straightforward, once we recover the community membership vectors since P ←
(Π>)†E[G|Π]Π†. However, when empirical moments are available, we are able to establish
better reconstruction guarantees through a different method, outlined in Algorithm 1. We
define Q̂ such that its i-th row is

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
~1>,

based on estimates Π̂, and the matrix P̂ is obtained as P̂ ← Q̂GQ̂>. We subsequently
establish that Q̂Π̂> ≈ I, under a set of sufficient conditions outlined in the next section.

3.3.7 Improved Support Recovery Estimates in Homophilic Models

A sub-class of community model are those satisfying homophily. As discussed in Section 1,
homophily or the tendency to form edges within the members of the same community has
been posited as an important factor in community formation, especially in social settings.
Many of the existing learning algorithms (e.g., Chen et al., 2012) require this assumption to
provide guarantees in the stochastic block model setting. Moreover, our procedure described
below can be easily modified to work in situations where the order of intra-connectivity
and inter-connectivity among communities is reversed, i.e., in the community connectivity
matrix P ∈ [0, 1]k×k, P (i, i) ≡ p < P (i, j) ≡ q, for all i 6= j. For instance, in the k-coloring
model (McSherry, 2001), p = 0 and q > 0.

We describe the post-processing method in Procedure 3 for models with community
connectivity matrix P satisfying P (i, i) ≡ p > P (i, j) ≡ q for all i 6= j. For such models,
we can obtain improved estimates by averaging. Specifically, consider nodes in set C and
edges going from C to nodes in B. First, consider the special case of the stochastic block
model: for each node c ∈ C, compute the number of neighbors in B belonging to each
community (as given by the estimate Π̂ from Algorithm 1), and declare the community
with the maximum number of such neighbors as the community of node c. Intuitively, this
provides a better estimate for ΠC since we average over the edges in B. This method has
been used before in the context of spectral clustering (McSherry, 2001).

The same idea can be extended to the general mixed membership (homophilic) models:
declare communities to be significant if they exceed a certain threshold, as evaluated by
the average number of edges to each community. The correctness of the procedure can be
gleaned from the fact that if the true F matrix is input, it satisfies

Fj,i = q + Πi,j(p− q), ∀ i ∈ [k], j ∈ [n],

and if the true P matrix is input, H = p and L = q. Thus, under a suitable threshold ξ,
the entries Fj,i provide information on whether the corresponding community weight Πi,j

is significant.

In the next section, we establish that in certain regime of parameters, this support
recovery procedure can lead to zero-error support recovery of significant community mem-
berships of the nodes and also rule out communities where a node does not have a strong
presence.
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Procedure 3 {Ŝ} ← SupportRecoveryHomophilicModels(G, k, α0, ξ, Π̂)

Input: Adjacency matrix G ∈ Rn×n, k is the number of communities, α0 :=
∑

i αi, where
α is the Dirichlet parameter vector, ξ is the threshold for support recovery, corresponding
to significant community memberships of an individual. Get estimate Π̂ from Algorithm 1.
Also asume the model is homophilic: P (i, i) ≡ p > P (i, j) ≡ q, for all i 6= j.

Output: Ŝ ∈ {0, 1}n×k is the estimated support for significant community memberships
(see Theorem 7 for guarantees).
Consider partitions A,B,C,X, Y as in Algorithm 1.
Define Q̂ on lines of definition in Algorithm 1, using estimates Π̂. Let the i-th row for

set B be Q̂iB := (α0 + 1)
Π̂iB
|Π̂iB |1

− α0
n
~1>. Similarly define Q̂iC .

Estimate F̂C ← GC,BQ̂
>
B, P̂ ← Q̂C F̂C .

if α0 = 0 (stochastic block model) then
for x ∈ C do

Let i∗ ← arg maxi∈[k] F̂C(x, i) and Ŝ(i∗, x)← 1 and 0 o.w.
end for

else
Let H be the average of diagonals of P̂ , L be the average of off-diagonals of P̂
for x ∈ C, i ∈ [k] do
Ŝ(i, x)← 1 if F̂C(x, i) ≥ L+ (H −L) · 3ξ

4 and zero otherwise.{Identify large entries}
end for

end if
Permute the roles of the sets A,B,C,X, Y to get results for remaining nodes.
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3.3.8 Computational Complexity

We note that the computational complexity of the method, implemented naively, is O(n2k+
k4.43α̂−1

min) when α0 > 1 and O(n2k) when α0 < 1. This is because the time for computing
whitening matrices is dominated by SVD of the top k singular vectors of n×n matrix, which
takes O(n2k) time. We then compute the whitened tensor T which requires time O(n2k +
k3n) = O(n2k), since for each i ∈ Y , we multiply Gi,A, Gi,B, Gi,C with the corresponding
whitening matrices, and this step takes O(nk) time. We then average this k× k× k tensor
over different nodes i ∈ Y to the result, which takes O(k3) time in each step.

For the tensor power method, the time required for a single iteration is O(k3). We
need at most log n iterations per initial vector, and we need to consider O(α̂−1

mink
0.43) initial

vectors (this could be smaller when α0 < 1). Hence the total running time of tensor power
method is O(k4.43α̂−1

min) (and when α0 is small this can be improved to O(k4α̂−1
min) which is

dominated by O(n2k).

In the process of estimating Π and P , the dominant operation is multiplying k×n matrix
by n × n matrix, which takes O(n2k) time. For support recovery, the dominant operation
is computing the “average degree”, which again takes O(n2k) time. Thus, we have that the
overall computational time is O(n2k + k4.43α̂−1

min) when α0 > 1 and O(n2k) when α0 < 1.

Note that the above bound on complexity of our method nearly matches the bound
for spectral clustering method (McSherry, 2001), since computing the k-rank SVD requires
O(n2k) time. Another method for learning stochastic block models is based on convex
optimization involving semi-definite programming (SDP) (Chen et al., 2012), and it provides
the best scaling bounds (for both the network size n and the separation p − q for edge
connectivity) known so far. The specific convex problem can be solved via the method
of augmented Lagrange multipliers (Lin et al., 2010), where each step consists of an SVD
operation and q-linear convergence is established by Lin et al. (2010). This implies that the
method has complexity O(n3), since it involves taking SVD of a general n×n matrix, rather
than a k-rank SVD. Thus, our method has significant advantage in terms of computational
complexity, when the number of communities is much smaller than the network size (k � n).

Further, a subsequent work provides a more sophisticated implementation of the pro-
posed tensor method through parallelization and the use of stochastic gradient descent for
tensor decomposition (Huang et al., 2013). Additionally, the k-rank SVD operations are
approximated via randomized methods such as the Nystrom’s method leading to more effi-
cient implementations (Gittens and Mahoney, 2013). Huang et al. (2013) deploy the tensor
approach for community detection and establish that it has a running time of O(n + k3)
using nk cores under a parallel computation model (JáJá, 1992).

4. Sample Analysis for Proposed Learning Algorithm

In this section we analyze our algorithm when the moments are estimated from the sample.
Unlike common sample complexity analysis, here we are only given one instance of the
graph. We treat the edges in the graph as independent samples (conditioned on community
membership), and the “sample complexity” will control how many communities we can
learn in a graph with n vertices.
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4.1 Homogeneous Mixed Membership Models

It is easier to first present the results for our proposed algorithm for the special case,
where all the communities have the same expected size and the entries of the community
connectivity matrix P are equal on diagonal and off-diagonal locations:

α̂i ≡
1

k
, P (i, j) = p · I(i = j) + q · I(i 6= j), p ≥ q. (25)

In other words, the probability of an edge according to P only depends on whether it is
between two individuals of the same community or between different communities. The
above setting is also well studied for stochastic block models (α0 = 0), allowing us to
compare our results with existing ones. The results for general mixed membership models
are deferred to Section 4.2.

[A1] Sparse regime of Dirichlet parameters: The community membership vectors are
drawn from the Dirichlet distribution, Dir(α), under the mixed membership model. We
assume that αi < 1 for i ∈ [k] (see Section 2.1 for an extended discussion on the sparse
regime of the Dirichlet distribution) and that α0 is known.

[A2] Condition on the network size: Given the concentration parameter of the Dirich-
let distribution, α0 :=

∑
i αi, we require that

n = Ω̃(k2(α0 + 1)2), (26)

and that the disjoint sets A,B,C,X, Y are chosen randomly and are of size Θ(n). Note
that from assumption A1, αi < 1 which implies that α0 < k. Thus, in the worst-case, when
α0 = Θ(k), we require13 n = Ω̃(k4), and in the best case, when α0 = Θ(1), we require
n = Ω̃(k2). The latter case includes the stochastic block model (α0 = 0), and thus, our
results match the state-of-art bounds for learning stochastic block models.

[A3] Condition on edge connectivity: Recall that p is the probability of intra-
community connectivity and q is the probability of inter-community connectivity. We
require that

p− q
√
p

= Ω

(
(α0 + 1)k

n1/2

)
(27)

The above condition is on the standardized separation between intra-community and inter-
community connectivity (note that

√
p is the standard deviation of a Bernoulli random

variable). The above condition is required to control the perturbation in the whitened
tensor (computed using observed network samples), thereby, providing guarantees on the
estimated eigen-pairs through the tensor power method.

[A4] Condition on number of iterations of the power method: We assume that the
number of iterations N of the tensor power method in Procedure 2 satisfies

N ≥ C2 ·
(

log(k) + log log

(
p− q
p

))
, (28)

for some constant C2.

13. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to poly-log factors.
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[A5] Choice of τ for thresholding community vector estimates: The threshold τ
for obtaining estimates Π̂ of community membership vectors in Algorithm 1 is chosen as

τ =

Θ

(
k
√
α0√
n
·
√
p

p− q

)
, α0 6= 0, (29)

0.5, α0 = 0, (30)

For the stochastic block model (α0 = 0), since πi is a basis vector, we can use a large
threshold. For general models (α0 6= 0), τ can be viewed as a regularization parameter and
decays as n−1/2 when other parameters are held fixed. We are now ready to state the error
bounds on the estimates of community membership vectors Π and the block connectivity
matrix P . Π̂ and P̂ are the estimates computed in Algorithm 1.

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively.
We say that an event holds with high probability, if it occurs with probability 1 − n−c for
some constant c > 0.

Theorem 5 (Guarantees on Estimating P , Π) Under assumptions A1-A5, we have with
high probability

επ,`1 := max
i∈[n]
‖Π̂i −Πi‖1 = Õ

(
(α0 + 1)3/2√np

(p− q)

)
(31)

εP := max
i,j∈[k]

|P̂i,j − Pi,j | = Õ

(
(α0 + 1)3/2k

√
p

√
n

)
. (32)

The proofs are given in the Appendix and a proof outline is provided in Section 4.3.
The main ingredient in establishing the above result is the tensor concentration bound

and additionally, recovery guarantees under the tensor power method in Procedure 2. We
now provide these results below.

Recall that FA := Π>AP
> and Φ = W>A FA Diag(α̂1/2) denotes the set of tensor eigenvec-

tors under exact moments in (23), and Φ̂ is the set of estimated eigenvectors under empirical
moments, obtained using Procedure 1. We establish the following guarantees.

Lemma 6 (Perturbation bound for estimated eigen-pairs) Under the assumptions
A1-A4, the recovered eigenvector-eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method in
Procedure 2 satisfies with high probability, for a permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8k−1/2εT , max

i∈[k]
|λi − α̂−1/2

θ(i) | ≤ 5εT , (33)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)

−E[Tα0

Y→{A,B,C}(WA,WBRAB,WCRAC)|ΠA∪B∪C ]
∥∥∥ (34)

= Õ

(
(α0 + 1)k3/2√p

(p− q)
√
n

)
, (35)

where ‖T‖ for a tensor T refers to its spectral norm.
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Remark: (Stochastic Block Models (α0 = 0)) For stochastic block models, assumptions A2
and A3 reduce to

n = Ω̃(k2), ζ = Θ

( √
p

p− q

)
= O

(
n1/2

k

)
. (36)

This matches with the best known scaling (up to poly-log factors), and was previously
achieved via convex optimization by Chen et al. (2012) for stochastic block models. How-
ever, our results in Theorem 5 do not provide zero error guarantees as in Chen et al. (2012).
We strengthen our results to provide zero-error guarantees in Section 4.1.1 below and thus,
match the scaling of Chen et al. (2012) for stochastic block models. Moreover, we also pro-
vide zero-error support recovery guarantees for recovering significant memberships of nodes
in mixed membership models in Section 4.1.1.

Remark: (Dependence on α0) The guarantees degrade as α0 increases, which is intuitive
since the extent of community overlap increases. The requirement for scaling of n also grows
as α0 increases. Note that the guarantees on επ and εP can be improved by assuming a more
stringent scaling of n with respect to α0, rather than the one specified by A2.

4.1.1 Zero-error Guarantees for Support Recovery

Recall that we proposed Procedure 3 as a post-processing step to provide improved support
recovery estimates. We now provide guarantees for this method.

We now specify the threshold ξ for support recovery in Procedure 3.

[A6] Choice of ξ for support recovery: We assume that the threshold ξ in Procedure 3
satisfies

ξ = Ω(εP ),

where εP is specified in Theorem 5.

We now state the guarantees for support recovery.

Theorem 7 (Support recovery guarantees) Assuming A1-A6 and (25) hold, the sup-
port recovery method in Procedure 3 has the following guarantees on the estimated support
set Ŝ: with high probability,

Π(i, j) ≥ ξ ⇒ Ŝ(i, j) = 1 and Π(i, j) ≤ ξ

2
⇒ Ŝ(i, j) = 0, ∀i ∈ [k], j ∈ [n], (37)

where Π is the true community membership matrix.

Thus, the above result guarantees that the Procedure 3 correctly recovers all the “large”
entries of Π and also correctly rules out all the “small” entries in Π. In other words, we
can correctly infer all the significant memberships of each node and also rule out the set of
communities where a node does not have a strong presence.

The only shortcoming of the above result is that there is a gap between the “large”
and “small” values, and for an intermediate set of values (in [ξ/2, ξ]), we cannot guarantee
correct inferences about the community memberships. Note this gap depends on εP , the
error in estimating the P matrix. This is intuitive, since as the error εP decreases, we can
infer the community memberships over a large range of values.
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For the special case of stochastic block models (i.e., limα0 → 0), we can improve the
above result and give a zero error guarantee at all nodes (w.h.p). Note that we no longer
require a threshold ξ in this case, and only infer one community for each node.

Corollary 8 (Zero error guarantee for block models) Assuming A1-A5 and (25) hold,
the support recovery method in Procedure 3 correctly identifies the community memberships
for all nodes with high probability in case of stochastic block models (α0 → 0).

Thus, with the above result, we match the state-of-art results of Chen et al. (2012) for
stochastic block models in terms of scaling requirements and recovery guarantees.

4.2 General (Non-homogeneous) Mixed Membership Models

In the previous sections, we provided learning guarantees for learning homogeneous mixed
membership models. Here, we extend the results to learning general non-homogeneous
mixed membership models under a sufficient set of conditions, involving scaling of various
parameters such as network size n, number of communities k, concentration parameter α0

of the Dirichlet distribution (which is a measure of overlap of the communities) and so on.
[B1] Sparse regime of Dirichlet parameters: The community membership vectors are
drawn from the Dirichlet distribution, Dir(α), under the mixed membership model. We
assume that14 αi < 1 for i ∈ [k] αi < 1 (see Section 2.1 for an extended discussion on the
sparse regime of the Dirichlet distribution).
[B2] Condition on the network size: Given the concentration parameter of the Dirich-
let distribution, α0 :=

∑
i αi, and α̂min := αmin/α0, the expected size of the smallest com-

munity, define

ρ :=
α0 + 1

α̂min
. (38)

We require that the network size scale as

n = Ω
(
ρ2 log2 k

)
, (39)

and that the sets A,B,C,X, Y are Θ(n). Note that from assumption B1, αi < 1 which
implies that α0 < k. Thus, in the worst-case, when α0 = Θ(k), we require15 n = Ω̃(k4),
assuming equal sizes: α̂i = 1/k, and in the best case, when α0 = Θ(1), we require n = Ω̃(k2).
The latter case includes the stochastic block model (α0 = 0), and thus, our results match
the state-of-art bounds for learning stochastic block models. See Section 4.1 for an extended
discussion.
[B3] Condition on relative community sizes and block connectivity matrix: Recall
that P ∈ [0, 1]k×k denotes the block connectivity matrix. Define

ζ :=

(
α̂max

α̂min

)1/2
√

(maxi(Pα̂)i)

σmin(P )
, (40)

14. The assumption B1 that the Dirichlet distribution be in the sparse regime is not strictly needed. Our
results can be extended to general Dirichlet distributions, but with worse scaling requirements on n. The
dependence of n is still polynomial in α0, i.e., we require n = Ω̃((α0 + 1)cα̂−2

min), where c ≥ 2 is some
constant.

15. The notation Ω̃(·), Õ(·) denotes Ω(·), O(·) up to log factors.
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where σmin(P ) is the minimum singular value of P . We require that

ζ =


O

(
n1/2

ρ

)
, α0 < 1 (41)

O

(
n1/2

ρkα̂max

)
α0 ≥ 1. (42)

Intuitively, the above condition requires the ratio of maximum and minimum expected
community sizes to be not too large and for the matrix P to be well conditioned. The
above condition is required to control the perturbation in the whitened tensor (computed
using observed network samples), thereby, providing guarantees on the estimated eigen-
pairs through the tensor power method. The above condition can be interpreted as a
separation requirement between intra-community and inter-community connectivity in the
special case considered in Section 4.1. Specifically, for the special case of homogeneous
mixed membership model, we have

σmin(P ) = Θ(p− q), max
i

(Pα̂)i =
p

k
+ (k − 1)

q

k
≤ p.

Thus, the assumptions A2 and A3 in Section 4.1 given by

n = Ω̃(k2(α0 + 1)2), ζ = Θ

( √
p

p− q

)
= O

(
n1/2

(α0 + 1)k

)

are special cases of the assumptions B2 and B3 above.
[B4] Condition on number of iterations of the power method: We assume that the
number of iterations N of the tensor power method in Procedure 2 satisfies

N ≥ C2 ·
(

log(k) + log log

(
σmin(P )

(maxi(Pα̂)i)

))
, (43)

for some constant C2.
[B5] Choice of τ for thresholding community vector estimates: The threshold τ
for obtaining estimates Π̂ of community membership vectors in Algorithm 1 is chosen as

τ =

Θ

(
ρ1/2 · ζ · α̂1/2

max

n1/2 · α̂min

)
, α0 6= 0, (44)

0.5, α0 = 0, (45)

For the stochastic block model (α0 = 0), since πi is a basis vector, we can use a large
threshold. For general models (α0 6= 0), τ can be viewed as a regularization parameter and
decays as n−1/2 when other parameters are held fixed. Moreover, when n = Θ̃(ρ2), we have
that τ ∼ ρ−1/2 when other terms are held fixed. Recall that ρ ∝ (α0 +1) when the expected
community sizes α̂i are held fixed. In this case, τ ∼ ρ−1/2 allows for smaller values to be
picked up after thresholding as α0 is increased. This is intuitive since as α0 increases, the
community vectors π are more “spread out” across different communities and have smaller
values.
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We are now ready to state the error bounds on the estimates of community membership
vectors Π and the block connectivity matrix P . Π̂ and P̂ are the estimates computed in
Algorithm 1.

Recall that for a matrix M , (M)i and (M)i denote the ith row and column respectively.
We say that an event holds with high probability, if it occurs with probability 1 − n−c for
some constant c > 0.

Theorem 9 (Guarantees on estimating P , Π) Under assumptions B1-B5, The esti-
mates P̂ and Π̂ obtained from Algorithm 1 satisfy with high probability,

επ,`1 := max
i∈[k]
|(Π̂)i − (Π)i|1 = Õ

(
n1/2 · ρ3/2 · ζ · α̂max

)
(46)

εP := max
i,j∈[n]

|P̂i,j − Pi,j | = Õ
(
n−1/2 · ρ5/2 · ζ · α̂3/2

max · (Pmax − Pmin)
)

(47)

The proofs are in Appendix B and a proof outline is provided in Section 4.3.

The main ingredient in establishing the above result is the tensor concentration bound
and additionally, recovery guarantees under the tensor power method in Procedure 2. We
now provide these results below.

Recall that FA := Π>AP
> and Φ = W>A FA Diag(α̂1/2) denotes the set of tensor eigenvec-

tors under exact moments in (23), and Φ̂ is the set of estimated eigenvectors under empirical
moments, obtained using Procedure 1. We establish the following guarantees.

Lemma 10 (Perturbation bound for estimated eigen-pairs) Under the assumptions
B1-B4, the recovered eigenvector-eigenvalue pairs (Φ̂i, λ̂i) from the tensor power method in
Procedure 2 satisfies with high probability, for a permutation θ, such that

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8α̂1/2

maxεT , max
i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (48)

The tensor perturbation bound εT is given by

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)

−E[Tα0

Y→{A,B,C}(WA,WBRAB,WCRAC)|ΠA∪B∪C ]
∥∥∥ (49)

= Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
, (50)

where ‖T‖ for a tensor T refers to its spectral norm, ρ is defined in (38) and ζ in (40).

4.2.1 Application to Planted Clique Problem

The planted clique problem is a special case of the stochastic block model Condon and Karp
(1999), and is arguably the simplest setting for the community problem. Here, a clique of
size s is uniformly planted (or placed) in an Erdős-Rényi graph with edge probability 0.5.
This can be viewed as a stochastic block model with k = 2 communities, where α̂min = s/n
is the probability of a node being in a clique and α̂max = 1− s/n. The connectivity matrix
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is P = [1, q; q, q] with q = 0.5, since the probability of connectivity within the clique is 1
and the probability of connectivity for any other node pair is 0.5.

Since the planted clique setting has unequal sized communities, the general result in
Section 9 is applicable, and we demonstrate how the assumptions (B1)-(B5) simplify for
the planted clique setting. We have that α0 = 0, since the communities are non-overlapping.
For assumption B2, we have that

ρ =
α0 + 1

α̂min
=
n

s
, n = Ω̃(ρ2)⇒ s = Ω̃(

√
n). (51)

For assumption B3, we have that σmin(P ) = Θ(1) and that maxi(Pα̂)i ≤ s/n+ q ≤ 2, and
thus the assumption B3 simplifies as

ζ :=

(
α̂max

α̂min

)1/2
√

(maxi(Pα̂)i)

σmin(P )
= Õ

(√
n

ρ

)
⇒ s = Ω̃

(
n2/3

)
. (52)

The condition in (51) that s = Ω̃(n1/2) matches the computational lower bounds for recover-
ing the clique (Feldman et al., 2012). Unfortunately, the condition in (52) that s = Ω̃

(
n2/3

)
is worse. This is required for assumption (B3) to hold, which is needed to ensure the success
of the tensor power method. The whitening step is particularly sensitive to the condition
number of the matrix to be whitened (i.e., matrices FA, FB, FC in our case and the condition
numbers for these matrices depend on the ratio of the community sizes), which results in
a weaker guarantee. Thus, our method does not perform very well when the community
sizes are drastically different. It remains an open question if our method can be improved
in this setting. We conjecture that using “peeling” ideas similar to Ailon et al. (2013),
where the communities are recovered one by one can improve our dependence on the ratio
of community sizes.

4.3 Proof Outline

We now summarize the main techniques involved in proving Theorem 9. The details are in
the Appendix. The main ingredient is the concentration of the adjacency matrix: since the
edges are drawn independently conditioned on the community memberships, we establish
that the adjacency matrix concentrates around its mean under the stated assumptions. See
Appendix C.4 for details. With this in hand, we can then establish concentration of various
quantities used by our learning algorithm.

Step 1: Whitening matrices. We first establish concentration bounds on the whitening
matrices ŴA, ŴB, ŴC computed using empirical moments, described in Section 3.3.1. With
this in hand, we can approximately recover the span of matrix FA since Ŵ>A F Diag(α̂i)

1/2 is a
rotation matrix. The main technique employed is the Matrix Bernstein’s inequality (Tropp,
2012, thm. 1.4). See Appendix C.2 for details.

Step 2: Tensor concentration bounds. Recall that we use the whitening matrices to obtain
a symmetric orthogonal tensor. We establish that the whitened and symmetrized tensor
concentrates around its mean. (Note that the empirical third order tensor TX→A,B,C tends
to its expectation conditioned on ΠA,ΠB,ΠC when |X| → ∞). This is done in several stages
and we carefully control the tensor perturbation bounds. See Appendix C.1 for details.
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Step 3: Tensor power method analysis. We analyze the performance of Procedure 2 under
empirical moments. We employ the various improvements, detailed in Section 3.3.3 to es-
tablish guarantees on the recovered eigen-pairs. This includes coming up with a condition
on the tensor perturbation bound, for the tensor power method to succeed. It also involves
establishing that there exist good initializers for the power method among (whitened) neigh-
borhood vectors. This allows us to obtain stronger guarantees for the tensor power method,
compared to earlier analysis by Anandkumar et al. (2012b). This analysis is crucial for us to
obtain state-of-art scaling bounds for guaranteed recovery (for the special case of stochastic
block model). See Appendix A for details.

Step 4: Thresholding of estimated community vectors. In Step 3, we provide guarantees
for recovery of each eigenvector in `2 norm. Direct application of this result only allows us
to obtain `2 norm bounds for row-wise recovery of the community matrix Π. In order to
strengthen the result to an `1 norm bound, we threshold the estimated Π vectors. Here, we
exploit the sparsity in Dirichlet draws and carefully control the contribution of weak entries
in the vector. Finally, we establish perturbation bounds on P through rather straightforward
concentration bound arguments. See Appendix B.2 for details.

Step 5: Support recovery guarantees. To simplify the argument, consider the stochastic
block model. Recall that Procedure 3 readjusts the community membership estimates
based on degree averaging. For each vertex, if we count the average degree towards these
“approximate communities”, for the correct community the result is concentrated around
value p and for the wrong community the result is around value q. Therefore, we can
correctly identify the community memberships of all the nodes, when p − q is sufficiently
large, as specified by A3. The argument can be easily extended to general mixed membership
models. See Appendix B.4 for details.

4.4 Comparison with Previous Results

We now compare the results of this paper to our previous work (Anandkumar et al., 2012b)
on the use of tensor-based approaches for learning various latent variable models such as
topic models, hidden Markov models (HMM) and Gaussian mixtures. At a high level,
the tensor approach is exploited in a similar manner in all these models (including the
community model in this paper), viz., that the conditional-independence relationships of
the model result in a low rank tensor, constructed from low order moments under the given
model. However, there are several important differences between the community model and
the other latent variable models considered by Anandkumar et al. (2012b) and we list them
below. We also precisely list the various algorithmic improvements proposed in this paper
with respect to the tensor power method, and how they can be applicable to other latent
variable models.

4.4.1 Topic Model vs. Community Model

Among the latent variable models studied by Anandkumar et al. (2012b), the topic model,
viz., latent Dirichlet allocation (LDA), bears the closest resemblance to MMSB. In fact, the
MMSB model was originally inspired by the LDA model. The analogy between the MMSB
model and the LDA is direct under our framework and we describe it below.
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.
(a) Community model as a topic model

.
(b) Graphical model representation

Figure 2: Casting the community model as a topic model, we obtain conditional indepen-
dence of the three views.

Recall that for learning MMSBs, we consider a partition of the nodes {X,A,B,C} and
we consider the set of 3-stars from set X to A,B,C. We can construct an equivalent topic
model as follows: the nodes in X form the “documents” and for each document x ∈ X, the
neighborhood vectors G>xA, G

>
xB, G

>
xC form the three “words” or “views” for that document.

In each document x ∈ X, the community vector πx corresponds to the “topic vector” and
the matrices FA, FB and FC correspond to the topic-word matrices. Note that the three
views G>xA, G

>
xB, G

>
xC are conditionally independent given the topic vector πx. Thus, the

community model can be cast as a topic model or a multi-view model. See Figure 2.

Although the community model can be viewed as a topic model, it has some important
special properties which allows us to provide better guarantees. The topic-word matrices
FA, FB, FC are not arbitrary matrices. Recall that FA := Π>AP

> and similarly FB, FC are
random matrices and we can provide strong concentration bounds for these matrices by
appealing to random matrix theory. Moreover, each of the views in the community model
has additional structure, viz., the vector G>x,A has independent Bernoulli entries conditioned
on the community vector πx, while in a general multi-view model, we only specify the
conditional distribution of each view given the hidden topic vector. This further allows
us to provide specialized concentration bounds for the community model. Importantly, we
can recover the community memberships (or topic vectors) accurately while for a general
multi-view model this cannot be guaranteed and we can only hope to recover the model
parameters.

4.4.2 Improvements to Tensor Recovery Guarantees in This Paper

In this paper, we make modifications to the tensor power method of Anandkumar et al.
(2012b) and obtain better guarantees for the community setting. Recall that the two modi-
fications are adaptive deflation and initialization using whitened neighborhood vectors. The
adaptive deflation leads to a weaker gap condition for an initialization vector to succeed
in estimating a tensor eigenvector efficiently. Initialization using whitened neighborhood
vectors allows us to tolerate more noise in the estimated 3-star tensor, thereby improving
our sample complexity result. We make this improvement precise below.
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If we directly apply the tensor power method of Anandkumar et al. (2012b), without
considering the modifications, we require a stronger condition on the sample complexity
and edge connectivity. For simplicity, consider the homogeneous setting of Section 4.1. The
conditions (A2) and (A3) now need to be replaced with stronger conditions: [A2’] Sample
complexity: The number of samples satisfies

n = Ω̃(k4(α0 + 1)2).

[A3’] Edge connectivity: The edge connectivity parameters p, q satisfy

p− q
√
p

= Ω

(
(α0 + 1)k2

√
n

)
.

Thus, we obtain significant improvements in recovery guarantees via algorithmic modifica-
tions and careful analysis of concentration bounds.

The guarantees derived in this paper are specific to the community setting, and we
outlined previously the special properties of the community model when compared to a
general multi-view model. However, when the documents of the topic model are sufficiently
long, the word frequency vector within a document has good concentration, and our modified
tensor method has better recovery guarantees in this setting as well. Thus, the improved
tensor recovery guarantees derived in this paper are applicable in scenarios where we have
access to better initialization vectors rather than simple random initialization.

5. Conclusion

In this paper, we presented a novel approach for learning overlapping communities based on
a tensor decomposition approach. We established that our method is guaranteed to recover
the underlying community memberships correctly, when the communities are drawn from
a mixed membership stochastic block model (MMSB). Our method is also computationally
efficient and requires simple linear algebraic operations and tensor iterations. Moreover, our
method is tight for the special case of the stochastic block model (up to poly-log factors),
both in terms of sample complexity and the separation between edge connectivity within a
community and across different communities.

We now note a number of interesting open problems and extensions. While we obtained
tight guarantees for MMSB models with uniform sized communities, our guarantees are
weak when the community sizes are drastically different, such as in the planted clique set-
ting where we do not match the computational lower bound (Feldman et al., 2012). The
whitening step in the tensor decomposition method is particularly sensitive to the ratio
of community sizes and it is interesting to see if modifications can be made to our algo-
rithm to provide tight guarantees under unequal community sizes. While this paper mostly
dealt with the theoretical analysis of the tensor method for community detection, we note
recent experimental results where the tensor method is deployed on graphs with millions
of nodes with very good accuracy and running times (Huang et al., 2013). In fact, the
running times are more than an order of magnitude better than the state-of-art variational
approach for learning MMSB models. The work of (Huang et al., 2013) makes an im-
portant modification to make the method scalable, viz., that the tensor decomposition is
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carried out through stochastic updates in parallel unlike the serial batch updates considered
here. Establishing theoretical guarantees for stochastic tensor decomposition is an impor-
tant problem. Moreover, we have limited ourselves to the MMSB models, which assumes
a linear model for edge formation, which is not applicable universally. For instance, exclu-
sionary relationships, where two nodes cannot be connected because of their memberships
in certain communities cannot be imposed in the MMSB model. Are there other classes of
mixed membership models which do not suffer from this restriction, and yet are identifiable
and are amenable for learning? Moreover, the Dirichlet distribution in the MMSB model
imposes constraints on the memberships across different communities. Can we incorporate
mixed memberships with arbitrary correlations? The answers to these questions will further
push the boundaries of tractable learning of mixed membership communities models.
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Appendix A. Tensor Power Method Analysis

In this section, we leverage on the perturbation analysis for tensor power method in Anand-
kumar et al. (2012b). As discussed in Section 3.3.3, we propose the following modifications
to the tensor power method and obtain guarantees below for the modified method. The
two main modifications are: (1) we modify the tensor deflation process in the robust power
method in Procedure 2. Rather than a fixed deflation step after obtaining an estimate of
the eigenvalue-eigenvector pair, in this paper, we deflate adaptively depending on the cur-
rent estimate, and (2)rather than selecting random initialization vectors, as in Anandkumar
et al. (2012b), we initialize with vectors obtained from adjacency matrix.

Below in Section A.1, we establish success of the modified tensor method under “good”
initialization vectors, as defined below. This involves improved error bounds for the modified
deflation procedure provided in Section A.2. In Section C.5, we subsequently establish that
under the Dirichlet distribution (for small α0), we obtain “good” initialization vectors.

A.1 Analysis under Good Initialization Vectors

We now show that when “good” initialization vectors are input to tensor power method in
Procedure 2, we obtain good estimates of eigen-pairs under appropriate choice of number
of iterations N and spectral norm ε of tensor perturbation.

Let T =
∑

i∈[k] λivi, where vi are orthonormal vectors and λ1 ≥ λ2 ≥ . . . λk. Let

T̃ = T + E be the perturbed tensor with ‖E‖ ≤ ε. Recall that N denotes the number of
iterations of the tensor power method.
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We call an initialization vector u to be (γ,R0)-good if there exists vi such that 〈u, vi〉 >
R0 and

| 〈u, vi〉 | −max
j<i
| 〈u, vj〉 | > γ| 〈u, vi〉 |. (53)

Choose γ = 1/100.

Theorem 11 There exists universal constants C1, C2 > 0 such that the following holds.

ε ≤ C1 · λminR
2
0, N ≥ C2 ·

(
log(k) + log log

(
λmax

ε

))
, (54)

Assume there is at least one good initialization vector corresponding to each vi, i ∈ [k]. The
parameter ξ for choosing deflation vectors in each iteration of the tensor power method in
Procedure 2 is chosen as ξ ≥ 25ε. We obtain eigenvalue-eigenvector pairs (λ̂1, v̂1), (λ̂2, v̂2),
. . . , (λ̂k, v̂k) such that there exists a permutation π on [k] with

‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j), |λπ(j) − λ̂j | ≤ 5ε, ∀j ∈ [k],

and ∥∥∥∥∥∥T −
k∑
j=1

λ̂j v̂
⊗3
j

∥∥∥∥∥∥ ≤ 55ε.

Remark: (need for adaptive deflation) We now compare the above result with the result
in (Anandkumar et al., 2012b, Thm. 5.1), where similar guarantees are obtained for a sim-
pler version of the tensor power method without any adaptive deflation and using random
initialization. The main difference is in our requirement of the gap γ in (53) for an ini-
tialization vector is weaker than the gap requirement in (Anandkumar et al., 2012b, Thm.
5.1). This is due to the use of adaptive deflation in this paper.
Remark: (need for non-random initialization) In this paper, we employ whitened neigh-
borhood vectors generated under the MMSB model for initialization, while (Anandkumar
et al., 2012b, Thm. 5.1) assumes a random initialization. Under random initialization, we
obtain R0 ∼ 1/

√
k (with poly(k) trials), while for initialization using whitened neighborhood

vectors, we subsequently establish that R0 = Ω(1) is a constant, when number of samples n
is large enough. We also establish that the gap requirement in (53) is satisfied for the choice
of γ = 1/100 above. See Lemma 25 for details. Thus, we can tolerate much larger pertur-
bation ε of the third order moment tensor, when non-random initializations are employed.
Proof: The proof is on lines of the proof of (Anandkumar et al., 2012b, Thm. 5.1) but
here, we consider the modified deflation procedure, which improves the condition on ε in
(54). We provide the full proof below for completeness.

We prove by induction on i, the number of eigenpairs estimated so far by Procedure 2.
Assume that there exists a permutation π on [k] such that the following assertions hold.

1. For all j ≤ i, ‖vπ(j) − v̂j‖ ≤ 8ε/λπ(j) and |λπ(j) − λ̂j | ≤ 12ε.

2. D(u, i) is the set of deflated vectors given current estimate of the power method is
u ∈ Sk−1:

D(u, i; ξ) := {j : |λ̂iθ̂i| ≥ ξ} ∩ [i],

where θ̂i := 〈u, v̂i〉.
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3. The error tensor

Ẽi+1,u :=

(
T̂ −

∑
j∈D(u,i;ξ)

λ̂j v̂
⊗3
j

)
−

∑
j /∈D(u,i;ξ)

λπ(j)v
⊗3
π(j)

= E +
∑

j∈D(u,i;ξ)

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

)
satisfies

‖Ẽi+1,u(I, u, u)‖ ≤ 56ε, ∀u ∈ Sk−1; (55)

‖Ẽi+1,u(I, u, u)‖ ≤ 2ε, ∀u ∈ Sk−1 s.t. ∃j ≥ i+ 1 � (u>vπ(j))
2 ≥ 1− (168ε/λπ(j))

2.

(56)

We take i = 0 as the base case, so we can ignore the first assertion, and just observe that
for i = 0, D(u, 0; ξ) = ∅ and thus

Ẽ1,u = T̂ −
k∑
j=1

λiv
⊗3
i = E, ∀u ∈ Sk−1.

We have ‖Ẽ1‖ = ‖E‖ = ε, and therefore the second assertion holds.
Now fix some i ∈ [k], and assume as the inductive hypothesis. The power iterations now

take a subset of j ∈ [i] for deflation, depending on the current estimate. Set

C1 := min
{

(56 · 9 · 102)−1, (100 · 168)−1,∆′ from Lemma 12 with ∆ = 1/50
}
. (57)

For all good initialization vectors which are γ-separated relative to π(jmax), we have (i)

|θ(τ)
jmax,0

| ≥ R0, and (ii) that by (Anandkumar et al., 2012b, Lemma B.4) (using ε̃/p := 2ε,
κ := 1, and i∗ := π(jmax), and providing C2),

|T̃i(θ(τ)
N , θ

(τ)
N , θ

(τ)
N )− λπ(jmax)| ≤ 5ε,

(notice by definition that γ ≥ 1/100 implies γ0 ≥ 1 − 1/(1 + γ) ≥ 1/101, thus it follows
from the bounds on the other quantities that ε̃ = 2pε ≤ 56C1 · λminR

2
0 <

γ0
2(1+8κ) · λ̃min · θ2

i∗,0

as necessary). Therefore θN := θ
(τ∗)
N must satisfy

T̃i(θN , θN , θN ) = max
τ∈[L]

T̃i(θ
(τ)
N , θ

(τ)
N , θ

(τ)
N ) ≥ max

j≥i
λπ(j) − 5ε = λπ(jmax) − 5ε.

On the other hand, by the triangle inequality,

T̃i(θN , θN , θN ) ≤
∑
j≥i

λπ(j)θ
3
π(j),N + |Ẽi(θN , θN , θN )|

≤
∑
j≥i

λπ(j)|θπ(j),N |θ2
π(j),N + 56ε

≤ λπ(j∗)|θπ(j∗),N |+ 56ε,
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where j∗ := arg maxj≥i λπ(j)|θπ(j),N |. Therefore

λπ(j∗)|θπ(j∗),N | ≥ λπ(jmax) − 5ε− 56ε ≥ 4

5
λπ(jmax).

Squaring both sides and using the fact that θ2
π(j∗),N + θ2

π(j),N ≤ 1 for any j 6= j∗,

(
λπ(j∗)θπ(j∗),N

)2 ≥ 16

25

(
λπ(jmax)θπ(j∗),N

)2
+

16

25

(
λπ(jmax)θπ(j),N

)2
≥ 16

25

(
λπ(j∗)θπ(j∗),N

)2
+

16

25

(
λπ(j)θπ(j),N

)2
,

which in turn implies

λπ(j)|θπ(j),N | ≤
3

4
λπ(j∗)|θπ(j∗),N |, j 6= j∗.

This means that θN is (1/4)-separated relative to π(j∗). Also, observe that

|θπ(j∗),N | ≥
4

5
·
λπ(jmax)

λπ(j∗)
≥ 4

5
,

λπ(jmax)

λπ(j∗)
≤ 5

4
.

Therefore by (Anandkumar et al., 2012b, Lemma B.4) (using ε̃/p := 2ε, γ := 1/4, and
κ := 5/4), executing another N power iterations starting from θN gives a vector θ̂ that
satisfies

‖θ̂ − vπ(j∗)‖ ≤
8ε

λπ(j∗)
, |λ̂− λπ(j∗)| ≤ 5ε.

Since v̂i = θ̂ and λ̂i = λ̂, the first assertion of the inductive hypothesis is satisfied, as we
can modify the permutation π by swapping π(i) and π(j∗) without affecting the values of
{π(j) : j ≤ i− 1} (recall j∗ ≥ i).

We now argue that Ẽi+1,u has the required properties to complete the inductive step.
By Lemma 12 (using ε̃ := 5ε, ξ = 5ε̃ = 25ε and ∆ := 1/50, the latter providing one upper
bound on C1 as per (57)), we have for any unit vector u ∈ Sk−1,∥∥∥∥∥

(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤
(

1/50 + 100
i∑

j=1

(u>vπ(j))
2

)1/2

5ε ≤ 55ε. (58)

Therefore by the triangle inequality,

‖Ẽi+1(I, u, u)‖ ≤ ‖E(I, u, u)‖+

∥∥∥∥∥
(∑
j≤i

(
λπ(j)v

⊗3
π(j) − λ̂j v̂

⊗3
j

))
(I, u, u)

∥∥∥∥∥ ≤ 56ε.

Thus the bound (55) holds.
To prove that (56) holds, for any unit vector u ∈ Sk−1 such that there exists j′ ≥ i+ 1

with (u>vπ(j′))
2 ≥ 1− (168ε/λπ(j′))

2. We have (via the second bound on C1 in (57) and the
corresponding assumed bound ε ≤ C1 · λminR

2
0)

100

i∑
j=1

(u>vπ(j))
2 ≤ 100

(
1− (u>vπ(j′))

2
)
≤ 100

(
168ε

λπ(j′)

)2

≤ 1

50
,
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and therefore (
1/50 + 100

i∑
j=1

(u>vπ(j))
2

)1/2

5ε ≤ (1/50 + 1/50)1/25ε ≤ ε.

By the triangle inequality, we have ‖Ẽi+1(I, u, u)‖ ≤ 2ε. Therefore (56) holds, so the second
assertion of the inductive hypothesis holds. We conclude that by the induction principle,
there exists a permutation π such that two assertions hold for i = k. From the last induction
step (i = k), it is also clear from (58) that ‖T −

∑k
j=1 λ̂j v̂

⊗3
j ‖ ≤ 55ε. This completes the

proof of the theorem. �

A.2 Deflation Analysis

Lemma 12 (Deflation analysis) Let ε̃ > 0 and let {v1, . . . , vk} be an orthonormal basis
for Rk and λi ≥ 0 for i ∈ [k]. Let {v̂1, . . . , v̂k} ∈ Rk be a set of unit vectors and λ̂i ≥ 0.
Define third order tensor Ei such that

Ei := λiv
⊗3
i − λ̂iv̂

⊗3
i , ∀ i ∈ k.

For some t ∈ [k] and a unit vector u ∈ Sk−1 such that u =
∑

i∈[k] θivi and θ̂i := 〈u, v̂i〉, we
have for i ∈ [t],

|λ̂iθ̂i| ≥ ξ ≥ 5ε̃,

|λ̂i − λi| ≤ ε̃,
‖v̂i − vi‖ ≤ min{

√
2, 2ε̃/λi},

then, the following holds∥∥∥∥ t∑
i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

θ2
i

+ 64(1 + ε̃/λmin)2ε̃2 + 2048(1 + ε̃/λmin)2ε̃2.

In particular, for any ∆ ∈ (0, 1), there exists a constant ∆′ > 0 (depending only on ∆) such
that ε̃ ≤ ∆′λmin implies ∥∥∥∥ t∑

i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

∆ + 100
t∑
i=1

θ2
i

)
ε̃2.

Proof: The proof is on lines of deflation analysis in (Anandkumar et al., 2012b, Lemma
B.5), but we improve the bounds based on additional properties of vector u. From Anand-
kumar et al. (2012b), we have that for all i ∈ [t], and any unit vector u,∥∥∥∥ t∑

i=1

Ei(I, u, u)

∥∥∥∥2

2

≤
(

4(5 + 11ε̃/λmin)2 + 128(1 + ε̃/λmin)2(ε̃/λmin)2

)
ε̃2

t∑
i=1

θ2
i

+ 64(1 + ε̃/λmin)2ε̃2
t∑
i=1

(ε̃/λi)
2 + 2048(1 + ε̃/λmin)2ε̃2

( t∑
i=1

(ε̃/λi)
3

)2

.

(59)
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Let λ̂i = λi + δi and θ̂i = θi + βi. We have δi ≤ ε̃ and βi ≤ 2ε̃/λi, and that |λ̂iθ̂i| ≥ ξ.

||λ̂iθ̂i| − |λiθi|| ≤ |λ̂iθ̂i − λiθi|
≤ |(λi + δi)(θi + βi)− λiθi|
≤ |δiθi + λiβi + δiβi|
≤ 4ε̃.

Thus, we have that |λiθi| ≥ 5ε̃ − 4ε̃ = ε̃. Thus
∑t

i=1 ε̃
2/λ2

i ≤
∑

i θ
2
i ≤ 1. Substituting in

(59), we have the result. �

Appendix B. Proof of Theorem 9

We now prove the main results on error bounds claimed in Theorem 9 for the estimated
community vectors Π̂ and estimated block probability matrix P̂ in Algorithm 1. Below, we
first show that the tensor perturbation bounds claimed in Lemma 10 holds.

Let ‖T‖ denote the spectral norm for a tensor T (or in special cases a matrix or a
vector). Let ‖M‖F denote the Frobenius norm. Let |M1| denote the operator `1 norm, i.e.,
the maximum `1 norm of its columns and ‖M‖∞ denote the maximum `1 norm of its rows.

Let κ(M) denote the condition number, i.e., ‖M‖
σmin(M) .

B.1 Proof of Lemma 10

From Theorem 11 in Appendix A, we see that the tensor power method returns eigenvalue-
vector pair (λ̂i, Φ̂i) such that there exists a permutation θ with

max
i∈[k]
‖Φ̂i − Φθ(i)‖ ≤ 8α̂1/2

maxεT , (60)

and
max
i
|λi − α̂−1/2

θ(i) | ≤ 5εT , (61)

when the perturbation of the tensor is small enough, according to

εT ≤ C1α̂
−1/2
max r

2
0, (62)

for some constant C1, when initialized with a (γ, r0) good vector.
With the above result, two aspects need to be established: (1) the whitened tensor

perturbation εT is as claimed, (2) the condition in (62) is satisfied and (3) there exist
good initialization vectors when whitened neighborhood vectors are employed. The tensor
perturbation bound εT is established in Theorem 16 in Appendix C.1.

Lemma 25 establishes that when ζ = O(
√
nr2

0/ρ), we have good initialization vectors
with Recall r2

0 = Ω(1/α̂maxk) when α0 > 1 and r2
0 = Ω(1) for α0 ≤ 1, and γ = 1/100 with

probability 1− 9δ under Dirichlet distribution, when

n = Ω̃
(
α−1

mink
0.43 log(k/δ)

)
, (63)

which is satisfied since we assume α̂−2
min < n.
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We now show that the condition in (62) is satisfied under the assumptions B1-B4. Since
εT is given by

εT = Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
,

the condition in (62) is equivalent to ζ = O(
√
nr2

0/ρ). Therefore when ζ = O(
√
nr2

0/ρ), the
assumptions of Theorem 11 are satisfied.

B.2 Reconstruction of Π after Tensor Power Method

Let (M)i and (M)i denote the ith row and ith column in matrix M respectively. Let Z ⊆ Ac
denote any subset of nodes not in A, considered in Procedure LearnPartition Community.
Define

Π̃Z := Diag(λ)−1Φ>Ŵ>AG
>
Z,A. (64)

Recall that the final estimate Π̂Z is obtained by thresholding Π̃Z element-wise with threshold
τ in Procedure 1. We first analyze perturbation of Π̃Z .

Lemma 13 (Reconstruction Guarantees for Π̃Z) Assuming Lemma 10 holds and the
tensor power method recovers eigenvectors and eigenvalues up to the guaranteed errors, we
have with probability 1− 122δ,

επ := max
i∈Z
‖(Π̃Z)i − (ΠZ)i‖ = O

(
εT α̂

1/2
max

(
α̂max

α̂min

)1/2

‖ΠZ‖

)
,

= O

(
ρ · ζ · α̂1/2

max

(
α̂max

α̂min

)1/2
)

where εT is given by (72).

Proof: We have (Π̃Z)i = λ−1
i ((Φ)i)

>Ŵ>AG
>
Z,A. We will now use perturbation bounds for

each of the terms to get the result.
The first term is

‖Diag(λi)
−1 −Diag(α̂

1/2
i )‖ · ‖Diag(α̂1/2)F̃>A ‖ · ‖F̃A‖ · ‖ΠZ‖

≤ 5εT α̂maxα̂
−1/2
min (1 + ε1)2‖ΠZ‖

from the fact that ‖Diag(α̂1/2)F̃>A ‖ ≤ 1 + ε1, where ε1 is given by (87). The second term is

‖Diag(α̂1/2)‖ · ‖(Φ)i − α̂1/2
i (F̃A)i‖ · ‖F̃A‖ · ‖ΠZ‖

≤ 8α̂maxεT α̂
−1/2
min (1 + ε1)‖ΠZ‖

The third term is

‖α̂1/2
i ‖ · ‖(Ŵ

>
A −W>A )FAΠZ‖

≤ α̂1/2
maxα̂

−1/2
min ‖ΠZ‖εW (65)

≤ O

((
α̂max

α̂min

)1/2

εT α̂
1/2
min‖ΠZ‖

)
, (66)
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from Lemma 17 and finally, we have

‖α̂1/2
i ‖ · ‖WA‖ · ‖G>Z,A − FAΠZ‖

≤ O

(
α̂1/2

max

√
α0 + 1

α̂minσmin(P )

√
(max

i
(Pα̂)i)(1 + ε2 + ε3) log

k

δ

)
(67)

≤ O

((
α̂max

α̂min

)1/2

εT
√
α0 + 1(1 + ε2 + ε3)

√
log k

δ

)
(68)

from Lemma 22 and Lemma 23.

The third term in (66) dominates the last term in (68) since (α0 + 1) log k/δ < nα̂min

(due to assumption B2 on scaling of n). �

We now show that if we threshold the entries of Π̃Z , the the resulting matrix Π̂Z has
rows close to those in ΠZ in `1 norm.

Lemma 14 (Guarantees after thresholding) For Π̂Z := Thres(Π̃Z , τ), where τ is the
threshold, we have with probability 1− 2δ, that

επ,`1 := max
i∈[k]
|(Π̂Z)i − (ΠZ)i|1 = O

(
√
nη επ

√
log

1

2τ

(
1−

√
2 log(k/δ)

nη log(1/2τ)

)

+nητ +

√
(nη + 4τ2) log

k

δ
+
ε2
π

τ

)
,

where η = α̂max when α0 < 1 and η = αmax when α0 ∈ [1, k).

Remark: The above guarantee on Π̂Z is stronger than for Π̃Z in Lemma 13 since this is
an `1 guarantee on the rows compared to `2 guarantee on rows for Π̃Z .

Remark: When τ is chosen as

τ = Θ(
επ√
nη

) = Θ

(
ρ1/2 · ζ · α̂1/2

max

n1/2 · α̂min

)
,

we have that

max
i∈[k]
|(Π̂Z)i − (ΠZ)i|1 = Õ (

√
nη · επ)

= Õ
(
n1/2 · ρ3/2 · ζ · α̂max

)

Proof: Let Si := {j : Π̂Z(i, j) > 2τ}. For a vector v, let vS denote the sub-vector by
considering entries in set S. We now have

|(Π̂Z)i − (ΠZ)i|1 ≤ |(Π̂Z)iSi − (ΠZ)iSi |1 + |(ΠZ)iSci |1 + |(Π̂Z)iSci |1
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Case α0 < 1: From Lemma 26, we have P[Π(i, j) ≥ 2τ ] ≤ 8α̂i log(1/2τ). Since Π(i, j) are
independent for j ∈ Z, we have from multiplicative Chernoff bound (Kearns and Vazirani,
1994, Thm 9.2), that with probability 1− δ,

max
i∈[k]
|Si| < 8nα̂max log

(
1

2τ

)(
1−

√
2 log(k/δ)

nα̂i log(1/2τ)

)
.

We have

|(Π̃Z)iSi − (ΠZ)iSi |1 ≤ επ|Si|
1/2,

and the ith rows of Π̃Z and Π̂Z can differ on Si, we have |Π̃Z(i, j)− Π̂Z(i, j)| ≤ τ , for j ∈ Si,
and number of such terms is at most ε2

π/τ
2. Thus,

|(Π̃Z)iSi − (Π̂Z)iSi |1 ≤
ε2
π

τ
.

For the other term, from Lemma 26, we have

E[ΠZ(i, j) · δ(ΠZ(i, j) ≤ 2τ)] ≤ α̂i(2τ).

Applying Bernstein’s bound we have with probability 1− δ

max
i∈[k]

∑
j∈Z

ΠZ(i, j) · δ(ΠZ(i, j) ≤ 2τ) ≤ nα̂max(2τ) +

√
2(nα̂max + 4τ2) log

k

δ
.

For Π̂i
Sci

, we further divide Sci into Ti and Ui, where Ti := {j : τ/2 < ΠZ(i, j) ≤ 2τ} and

Ui := {j : ΠZ(i, j) ≤ τ/2}.
In the set Ti, using similar argument we know |(ΠZ)iTi−(Π̃Z)iTi |1 ≤ O(επ

√
nα̂max log 1/τ),

therefore

|Π̂i
Ti |1 ≤ |Π̃

i
Ti |1 ≤ |Π

i
Ti − Π̃i

Ti |1 + |Πi
Sci
|1 ≤ O(επ

√
nα̂max log 1/τ).

Finally, for index j ∈ Ui, in order for Π̂Z(i, j) be positive, it is required that Π̃Z(i, j)−
ΠZ(i, j) ≥ τ/2. In this case, we have

|(Π̂Z)iUi |1 ≤
4

τ

∥∥∥(Π̃Z)iUi −Πi
Ui

∥∥∥2
≤ 4ε2

π

τ
.

Case α0 ∈ [1, k): From Lemma 26, we see that the results hold when we replace α̂max with
αmax. �

B.3 Reconstruction of P after Tensor Power Method

Finally we would like to use the community vectors Π and the adjacency matrix G to
estimate the P matrix. Recall that in the generative model, we have E[G] = Π>PΠ. Thus,
a straightforward estimate is to use (Π̂†)>GΠ̂†. However, our guarantees on Π̂ are not
strong enough to control the error on Π̂† (since we only have row-wise `1 guarantees).
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We propose an alternative estimator Q̂ for Π̂† and use it to find P̂ in Algorithm 1. Recall
that the i-th row of Q̂ is given by

Q̂i := (α0 + 1)
Π̂i

|Π̂i|1
− α0

n
~1>.

Define Q using exact communities, i.e.,

Qi := (α0 + 1)
Πi

|Πi|1
− α0

n
~1>.

We show below that Q̂ is close to Π†, and therefore, P̂ := Q̂>GQ̂ is close to P w.h.p.

Lemma 15 (Reconstruction of P ) With probability 1− 5δ,

εP := max
i,j∈[n]

|P̂i,j − Pi,j | ≤ O

(
(α0 + 1)3/2επ(Pmax − Pmin)√

n
α̂−1

minα̂
1/2
max log

nk

δ

)

Remark: If we define a new matrix Q′ as (Q′)i := α0+1
nα̂i

Πi − α0
n
~1>, then EΠ[Q′Π>] = I.

Below, we show that Q′ is close to Q since E[|Πi|1] = nα̂i and thus the above result holds.
We require Q to be normalized by |Πi|1 in order to ensure that the first term of Q has equal
column norms, which will be used in our proofs subsequently.
Proof: The proof goes in three steps:

P ≈ QΠ>PΠQ> ≈ QGQ> ≈ Q̂GQ̂>.

Note that EΠ[ΠQ>] = I and by Bernstein’s bound, we can claim that ΠQ> is close to
I and can show that the i-th row of QΠ> satisfies

∆i := |(QΠ>)i − e>i |1 = O

(
k

√
log

(
nk

δ

)
α̂max

α̂min

1√
n

)
with probability 1− δ. Moreover,

|(Π>PΠQ>)i,j − (Π>P )i,j | ≤ |(Π>P )i((Q)j − ej)| = |(Π>P )i∆j |

≤ O

(
Pmaxk ·

√
α̂max/α̂min√
n

√
log

nk

δ

)
.

using the fact that (Π>P )i,j ≤ Pmax.
Now we claim that Q̂ is close to Q and it can be shown that

|Qi − Q̂i|1 ≤ O
(

εP
Pmax − Pmin

)
(69)

Using (69), we have

|(Π>PΠQ>)i,j − (Π>PΠQ̂>)i,j | = |(Π>PΠ)i(Q> − Q̂>)j |
= ((Π>PΠ)i − Pmin~1

>)|(Q> − Q̂>)j |1
≤ O((Pmax − Pmin)|(Q> − Q̂>)j |1) = O(εP ).
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using the fact that (Qj − Q̂j)~1 = 0, due to the normalization.
Finally, |(GQ̂>)i,j(Π

>PΠQ̂>)i,j | are small by standard concentration bounds (and the
differences are of lower order). Combining these |P̂i,j − Pi,j | ≤ O(εP ).

�

B.4 Zero-error Support Recovery Guarantees

Recall that we proposed Procedure 3 to provide improved support recovery estimates in
the special case of homophilic models (where there are more edges within a community
than to any community outside). We limit our analysis to the special case of uniform sized
communities (αi = 1/k) and matrix P such that P (i, j) = pI(i = j) + qI(i 6= j) and p ≥ q.
In principle, the analysis can be extended to homophilic models with more general P matrix
(with suitably chosen thresholds for support recovery).

We first consider analysis for the stochastic block model (i.e., α0 → 0) and prove the
guarantees claimed in Corollary 8.

Proof of Corollary 8: Recall the definition of Π̃ in (64) and Π̂ is obtained by thresholding
Π̃ with threshold τ . Since the threshold τ for stochastic block models is 0.5 (assumption
B5), we have

|(Π̂)i − (Π)i|1 = O(ε2
π), (70)

where επ is the row-wise `2 error for Π̃ in Lemma 13. This is because Π(i, j) ∈ {0, 1}, and
in order for our method to make a mistake, it takes 1/4 in the `22 error.

In Procedure 3, for the stochastic block model (α0 = 0), for a node x ∈ [n], we have

F̂ (x, i) =
∑
y∈[n]

Gx,y
Π̂(i, y)

|Π̂i|1
≈
∑
y∈[n]

Gx,y
Π̂(i, y)

|Πi|1
≈ k

n

∑
y∈[n]

Gx,yΠ̂(i, y),

using (70) and the fact that the size of each community on average is n/k. In other words, for
each vertex x, we compute the average number of edges from this vertex to all the estimated
communities according to Π̂, and set it to belong to the one with largest average degree.
Note that the margin of error on average for each node to be assigned the correct community
according to the above procedure is (p−q)n/k, since the size of each community is n/k and
the average number of intra-community edges at a node is pn/k and edges to any different
community at a node is qn/k. From (70), we have that the average number of errors made
is O((p − q)ε2

π). Note that the degrees concentrate around their expectations according
to Bernstein’s bound and the fact that the edges used for averaging is independent from
the edges used for estimating Π̂. Thus, for our method to succeed in inferring the correct
community at a node, we require,

O((p− q)ε2
π) ≤ (p− q)n

k
,

which implies

p− q ≥ Ω̃

(√
pk
√
n

)
.

�
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We now prove the general result on support recovery.

Proof of Theorem 7: From Lemma 15,

|P̂i,j − Pi,j | ≤ O(εP )

which implies bounds for the average of diagonals H and average of off-diagonals L:

|H − p| = O(εP ), |L− q| = O(εP ).

On similar lines as the proof of Lemma 15 and from independence of edges used to define
F̂ from the edges used to estimate Π̂, we also have

|F̂ (j, i)− F (j, i)| ≤ O(εP ).

Note that Fj,i = q + Πi,j(p − q). The threshold ξ satisfies ξ = Ω(εP ), therefore, all the
entries in F that are larger than q+ (p− q)ξ, the corresponding entries in S are declared to
be one, while none of the entries that are smaller than q+ (p− q)ξ/2 are set to one in S. �

Appendix C. Concentration Bounds

In this section we prove concentration bounds for the tensors and matrices appeared in the
algorithm.

C.1 Main Result: Tensor Perturbation Bound

We now provide the main result that the third-order whitened tensor computed from samples
concentrates. Recall that Tα0

Y→{A,B,C} denotes the third order moment computed using edges

from partition Y to partitions A,B,C in (15). ŴA, ŴBR̂AB, ŴCR̂AC are the whitening
matrices defined in (24). The corresponding whitening matrices WA,WBRAB,WCRAC for
exact moment third order tensor E[Tα0

Y→{A,B,C} |Π] will be defined later. Recall that ρ is

defined in (38) as ρ := α0+1
α̂min

. Given δ ∈ (0, 1), throughout assume that

n = Ω

(
ρ2 log2 k

δ

)
, (71)

as in Assumption (B2).

Theorem 16 (Perturbation of whitened tensor) When the partitions A,B,C,X, Y sat-
isfy (71), we have with probability 1− 100δ,

εT :=
∥∥∥Tα0

Y→{A,B,C}(ŴA, ŴBR̂AB, ŴCR̂AC)− E[Tα0

Y→{A,B,C}(WA, W̃B, W̃C)|ΠA,ΠB,ΠC ]
∥∥∥

= O

(
(α0 + 1)

√
(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

·

(
1 +

(
ρ2

n
log2 k

δ

)1/4
)√

log k

δ

)

= Õ

(
ρ√
n
· ζ

α̂
1/2
max

)
. (72)
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C.1.1 Proof Overview

The proof of the above result follows. It consists mainly of the following steps: (1) Con-
trolling the perturbations of the whitening matrices and (2) Establishing concentration of
the third moment tensor (before whitening). Combining the two, we can then obtain per-
turbation of the whitened tensor. Perturbations for the whitening step is established in
Appendix C.2. Auxiliary concentration bounds required for the whitening step, and for the
claims below are in Appendix C.3 and C.4.

Proof of Theorem 16: In tensor Tα0 in (15), the first term is

(α0 + 1)(α0 + 2)
∑
i∈Y

(
G>i,A ⊗G>i,B ⊗G>i,C

)
.

We claim that this term dominates in the perturbation analysis since the mean vector
perturbation is of lower order. We now consider perturbation of the whitened tensor

Λ0 =
1

|Y |
∑
i∈Y

(
(Ŵ>AG

>
i,A)⊗ (R̂>ABŴ

>
BG

>
i,B)⊗ (R̂>ACŴ

>
CG

>
i,C)
)
.

We show that this tensor is close to the corresponding term in the expectation in three
steps.

First we show it is close to

Λ1 =
1

|Y |
∑
i∈Y

(
(Ŵ>A FAπi)⊗ (R̂>ABŴ

>
B FBπi)⊗ (R̂>ACŴ

>
C FCπi)

)
.

Then this vector is close to the expectation over ΠY .

Λ2 = Eπ∼Dir(α)

(
(Ŵ>A FAπ)⊗ (R̂>ABŴ

>
B FBπ)⊗ (R̂>ACŴ

>
C FCπ)

)
.

Finally we replace the estimated whitening matrix ŴA with WA, defined in (73), and
note that WA whitens the exact moments.

Λ3 = Eπ∼Dir(α)

(
(W>A FAπ)⊗ (W̃>B FBπ)⊗ (W̃>C FCπ)

)
.

For Λ0−Λ1, the dominant term in the perturbation bound (assuming partitionsA,B,C,X, Y
are of size n) is (since for any rank 1 tensor, ‖u⊗ v ⊗ w‖ = ‖u‖ · ‖v‖ · ‖w‖),

O

(
1

|Y |
‖W̃>B FB‖2

∥∥∥∥∥∑
i∈Y

(
Ŵ>AG

>
i,A − Ŵ>A FAπi

)∥∥∥∥∥
)

O

(
1

|Y |
α̂−1

min ·
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

√
log

n

δ

)
,

with probability 1−13δ (Lemma 18). Since there are 7 terms in the third order tensor Tα0 ,
we have the bound with probability 1− 91δ.
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For Λ1 − Λ2, since ŴAFA Diag(α̂)1/2 has spectral norm almost 1, by Lemma 20 the
spectral norm of the perturbation is at most∥∥∥ŴAFA Diag(α̂)1/2

∥∥∥3
∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2πi)

⊗3

∥∥∥∥∥
≤ O

(
1

α̂min
√
n
·
√

log
n

δ

)
.

For the final term Λ2 − Λ3, the dominating term is

(ŴA −WA)FA Diag(α̂)1/2 ‖Λ3‖ ≤ εWA
‖Λ3‖

≤ O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂
3/2
minσmin(P )

(1 + ε1 + ε2 + ε3)

√
log

n

δ

)
.

Putting all these together, the third term ‖Λ2 − Λ3‖ dominates. We know with probability
at least 1− 100δ, the perturbation in the tensor is at most

O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂
3/2
minσmin(P )

(1 + ε1 + ε2 + ε3)

√
log

n

δ

)
.

�

C.2 Whitening Matrix Perturbations

Consider rank-k SVD of |X|−1/2(Gα0
X,A)>k−svd = ÛAD̂AV̂

>
A , and the whitening matrix is given

by ŴA := ÛAD̂
−1
A and thus |X|−1Ŵ>A (Gα0

X,A)>k−svd(G
α0
X,A)k−svdŴA = I. Now consider the

singular value decomposition of

|X|−1Ŵ>A E[(Gα0
X,A)>|Π] · E[(Gα0

X,A)|Π]ŴA = ΦD̃Φ>.

ŴA does not whiten the exact moments in general. On the other hand, consider

WA := ŴAΦAD̃
−1/2
A Φ>A. (73)

Observe that WA whitens |X|−1/2E[(Gα0
X,A)|Π]

|X|−1W>A E[(Gα0
X,A)>|Π]E[(Gα0

X,A)|Π]WA = (ΦAD̃
−1/2
A Φ>A)>ΦAD̃AΦ>AΦAD̃

−1/2
A Φ>A = I

Now the ranges of WA and ŴA may differ and we control the perturbations below.
Also note that R̂A,B, R̂A,C are given by

R̂AB := |X|−1Ŵ>B (Gα0
X,B)>k−svd(G

α0
X,A)k−svdŴA. (74)

RAB := |X|−1W>B E[(Gα0
X,B)>|Π] · E[Gα0

X,A|Π] ·WA. (75)

Recall εG is given by (80), and σmin

(
E[Gα0

X,A|Π]
)

is given in (23) and |A| = |B| = |X| = n.
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Lemma 17 (Whitening matrix perturbations) With probability 1− δ,

εWA
:= ‖Diag(α̂)1/2F>A (ŴA −WA)‖ = O

 (1− ε1)−1/2εG

σmin

(
E[Gα0

X,A|Π]
)
 (76)

εW̃B
:= ‖Diag(α̂)1/2F>B (ŴBR̂AB −WBRAB)‖ = O

 (1− ε1)−1/2εG

σmin

(
E[Gα0

X,B|Π]
)
 (77)

Thus, with probability 1− 6δ,

εWA
= εW̃B

= O

(
(α0 + 1)

√
maxi(Pα̂)i

n1/2α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

)
, (78)

where ε1, ε2 and ε3 are given by (86) and (87).

Remark: Note that when partitions X,A satisfy (71), ε1, ε2, ε3 are small. When P is well
conditioned and α̂min = α̂max = 1/k, we have εWA

, εW̃B
= O(k/

√
n).

Proof: Using the fact that WA = ŴAΦAD̃
−1/2
A Φ>A or ŴA = WAΦAD̃

1/2
A Φ>A we have that

‖Diag(α̂)1/2F>A (ŴA −WA)‖ ≤ ‖Diag(α̂)1/2F>AWA(I − ΦAD̃
1/2
A Φ>A)‖

= ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA(I − D̃1/2
A )(I + D̃

1/2
A )‖

≤ ‖Diag(α̂)1/2F>AWA‖ · ‖I − D̃A‖

using the fact that D̃A is a diagonal matrix.

Now note that WA whitens |X|−1/2E[Gα0
X,A|Π] = |X|−1/2FA Diag(α1/2)ΨX , where ΨX is

defined in (85). Further it is shown in Lemma 23 that ΨX satisfies with probability 1 − δ
that

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ O

(√
(α0 + 1)

α̂min|X|
· log

k

δ

)

Since ε1 � 1 when X,A satisfy (71). We have that |X|−1/2ΨX has singular values around
1. Since WA whitens |X|−1/2E[Gα0

X,A|Π], we have

|X|−1W>A FA Diag(α1/2)ΨXΨ>X Diag(α1/2)F>AWA = I.

Thus, with probability 1− δ,

‖Diag(α̂)1/2F>AWA‖ = O((1− ε1)−1/2).
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Let E[(Gα0
X,A)|Π] = (Gα0

X,A)k−svd + ∆. We have

‖I − D̃A‖ = ‖I − ΦAD̃AΦ>A‖
= ‖I − |X|−1Ŵ>A E[(Gα0

X,A)>|Π] · E[(Gα0
X,A)|Π]ŴA‖

= O
(
|X|−1‖Ŵ>A

(
∆>(Gα0

X,A)k−svd + ∆(Gα0
X,A)>k−svd

)
ŴA‖

)
= O

(
|X|−1/2‖Ŵ>A ∆>V̂A + V̂ >A ∆ŴA‖

)
,

= O
(
|X|−1/2‖ŴA‖‖∆‖

)
= O

(
|X|−1/2‖WA‖εG

)
,

since ‖∆‖ ≤ εG + σk+1(Gα0
X,A) ≤ 2εG, using Weyl’s theorem for singular value perturbation

and the fact that εG · ‖WA‖ � 1 and ‖WA‖ = |X|1/2/σmin

(
E[Gα0

X,A|Π]
)

.

We now consider perturbation of WBRAB. By definition, we have that

E[Gα0
X,B|Π] ·WBRAB = E[Gα0

X,A|Π] ·WA.

and

‖WBRAB‖ = |X|1/2σmin(E[Gα0
X,B|Π])−1.

Along the lines of previous derivation for εWA
, let

|X|−1(ŴBR̂AB)> · E[(Gα0
X,B)>|Π] · E[Gα0

X,B|Π]ŴBR̂AB = ΦBD̃BΦ>B.

Again using the fact that |X|−1ΨXΨ>X ≈ I, we have

‖Diag(α̂)1/2F>BWBRAB‖ ≈ ‖Diag(α̂)1/2F>AWA‖,

and the rest of the proof follows. �

C.3 Auxiliary Concentration Bounds

Lemma 18 (Concentration of sum of whitened vectors) Assuming all the partitions
satisfy (71), with probability 1− 7δ,∥∥∥∥∥∑

i∈Y

(
Ŵ>AG

>
i,A − Ŵ>A FAπi

)∥∥∥∥∥ = O(
√
|Y |α̂maxεWA

)

= O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε2 + ε3)

√
log n/δ

)
,∥∥∥∥∥∑

i∈Y

(
(ŴBR̂AB)>(G>i,B − FBπi)

)∥∥∥∥∥ = O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε1 + ε2 + ε3)

√
log n/δ

)
.
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Remark: Note that when P is well conditioned and α̂min = α̂max = 1/k, we have the
above bounds as O(k). Thus, when it is normalized with 1/|Y | = 1/n, we have the bound
as O(k/n).
Proof: Note that ŴA is computed using partition X and Gi,A is obtained from i ∈ Y .

We have independence for edges across different partitions X and Y . Let Ξi := Ŵ>A (G>i,A−
FAπi).Applying matrix Bernstein’s inequality to each of the variables, we have

‖Ξi‖ ≤ ‖ŴA‖ · ‖G>i,A − FAπi‖

≤ ‖ŴA‖
√
‖FA‖1,

from Lemma 22. The variances are given by

‖
∑
i∈Y

E[ΞiΞ
>
i |Π]‖ ≤

∑
i∈Y

Ŵ>A Diag(FAπi)ŴA,

≤ ‖ŴA‖2‖FY ‖1

= O

(
|Y |
|A|
· (α0 + 1)(maxi(Pα̂)i)

α̂2
minσ

2
min(P )

· (1 + ε2 + ε3)

)
,

with probability 1−2δ from (83) and (84), and ε2, ε3 are given by (87). Similarly, ‖
∑

i∈Y E[Ξ>i Ξi|Π]‖ ≤
‖ŴA‖2‖FY ‖1. Thus, from matrix Bernstein’s inequality, we have with probability 1− 3δ

‖
∑
i∈Y

Ξi‖ = O(‖ŴA‖
√

max(‖FA‖1, ‖FX‖1)).

= O

(√
(α0 + 1)(maxi(Pα̂)i)

α̂minσmin(P )
· (1 + ε2 + ε3)

√
log n/δ

)
On similar lines, we have the result for B and C, and also use the independence as-

sumption on edges in various partitions. �

We now show that not only the sum of whitened vectors concentrates, but that each
individual whitened vector Ŵ>AG

>
i,A concentrates, when A is large enough.

Lemma 19 (Concentration of a random whitened vector) Conditioned on πi, with
probability at least 1/4,∥∥∥Ŵ>AG>i,A −W>A FAπi∥∥∥ ≤ O(εWA

α̂
−1/2
min ) = Õ

(√
(α0 + 1)(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

)
.

Remark: The above result is not a high probability event since we employ Chebyshev’s
inequality to establish it. However, this is not an issue for us, since we will employ it to
show that out of Θ(n) whitened vectors, there exists at least one good initialization vec-
tor corresponding to each eigen-direction, as required in Theorem 11 in Appendix A. See
Lemma 25 for details.
Proof We have∥∥∥Ŵ>AG>i,A −W>A FAπi∥∥∥ ≤ ∥∥∥(ŴA −WA)>FAπi

∥∥∥+
∥∥∥Ŵ>A (G>i,A − FAπi)

∥∥∥ .
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The first term is satisfies satisfies with probability 1− 3δ

‖(Ŵ>A −W>A )FAπi‖ ≤ εWA
α̂
−1/2
min

= O

(
(α0 + 1)α̂

1/2
max

√
(maxi(Pα̂)i)

n1/2α̂
3/2
minσmin(P )

· (1 + ε1 + ε2 + ε3)

)

Now we bound the second term. Note that G>i,A is independent of Ŵ>A , since they are
related to disjoint subset of edges. The whitened neighborhood vector can be viewed as a
sum of vectors:

Ŵ>AG
>
i,A =

∑
j∈A

Gi,j(Ŵ
>
A )j =

∑
j∈A

Gi,j(D̂AÛ
>
A )j = D̂A

∑
j∈A

Gi,j(Û
>
A )j .

Conditioned on πi and FA, Gi,j are Bernoulli variables with probability (FAπi)j . The
goal is to compute the variance of the sum, and then use Chebyshev’s inequality noted in
Proposition 32.

Note that the variance is given by

‖E[(G>i,A − FAπi)>ŴAŴ
>
A (G>i,A − FAπi)]‖ ≤ ‖ŴA‖2

∑
j∈A

(FAπi)j

∥∥∥(Û>A )j

∥∥∥2
.

We now bound the variance. By Wedin’s theorem, we know the span of columns of ÛA is
O(εG/σmin(Gα0

X , A)) = O(εWA
) close to the span of columns of FA. The span of columns of

FA is the same as the span of rows in ΠA. In particular, let ProjΠ be the projection matrix
of the span of rows in ΠA, we have∥∥∥ÛAÛ>A − ProjΠ∥∥∥ ≤ O(εWA

).

Using the spectral norm bound, we have the Frobenius norm∥∥∥ÛAÛ>A − ProjΠ∥∥∥
F
≤ O(εWA

√
k)

since they are rank k matrices. This implies that

∑
j∈A

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2
= O(ε2WA

k).

Now

‖ProjjΠ‖ ≤
‖πj‖

σmin(ΠA)
= O

√(α0 + 1)

nα̂min

 ,

from Lemma 23
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Now we can bound the variance of the vectors
∑

j∈AGi,j(Û
>
A )j , since the variance of

Gi,j is bounded by (FAπi)j (its probability), and the variance of the vectors is at most∑
j∈A

(FAπi)j

∥∥∥(Û>A )j

∥∥∥2
≤ 2

∑
j∈A

(FAπi)j

∥∥∥ProjjΠ∥∥∥2
+ 2

∑
j∈A

(FAπi)j

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2

≤ 2
∑
j∈A

(FAπi)j max
j∈A

(∥∥∥ProjjΠ∥∥∥2
)

+ max
i,j

Pi,j
∑
j∈A

(∥∥∥(Û>A )j

∥∥∥− ∥∥∥ProjjΠ∥∥∥)2

≤ O
(
|FA|1(α0 + 1)

nα̂min

)
Now Chebyshev’s inequality implies that with probability at least 1/4 (or any other

constant), ∥∥∥∥∥∥
∑
j∈A

(Gi,j − FAπi)(Û>A )j

∥∥∥∥∥∥
2

≤ O
(
|FA|1(α0 + 1)

nα̂min

)
.

And thus, we have

Ŵ>A (Gi,A − FAπi) ≤

√
|FA|1(α0 + 1)

nα̂min
·
∥∥∥Ŵ>A ∥∥∥ ≤ O (εWA

α̂
−1/2
min

)
.

Combining the two terms, we have the result.

Finally, we establish the following perturbation bound between empirical and expected
tensor under the Dirichlet distribution, which is used in the proof of Theorem 16.

Lemma 20 (Concentration of third moment tensor under Dirichlet distribution)

With probability 1− δ, for πi
iid∼ Dir(α),∥∥∥∥∥ 1

|Y |
∑
i∈Y

(Diag(α̂)−1/2πi)
⊗3 − Eπ∼Dir(α)(Diag(α̂)−1/2π)⊗3

∥∥∥∥∥ ≤ O
(
· 1

α̂min
√
n

√
log

n

δ

)
= Õ

(
1

α̂min
√
n

)
Proof The spectral norm of this tensor cannot be larger than the spectral norm of a k×k2

matrix that we obtain be “collapsing” the last two dimensions (by definitions of norms).
Let φi := Diag(α̂)−1/2πi and the “collapsed” tensor is the matrix φi(φi⊗φi)> (here we view
φi ⊗ φi as a vector in Rk2). We apply Matrix Bernstein on the matrices Zi = φi(φi ⊗ φi)>.
Now ∥∥∥∥∥∑

i∈Y
E[ZiZ

>
i ]

∥∥∥∥∥ ≤ |Y |max ‖φ‖4
∥∥∥E[φφ>]

∥∥∥ ≤ |Y |α̂−2
min

since
∥∥E[φφ>]

∥∥ ≤ 2. For the other variance term
∥∥∑

i∈Y E[Z>i Zi]
∥∥, we have∥∥∥∥∥∑

i∈Y
E[Z>i Zi]

∥∥∥∥∥ ≤ |Y |α̂min

∥∥∥E[(φ⊗ φ)(φ⊗ φ)>]
∥∥∥ .
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It remains to bound the norm of E[(φ⊗ φ)(φ⊗ φ)>]. We have

‖E[(φ⊗ φ)(φ⊗ φ)>]‖ = sup

‖E[M2]‖, s.t.M =
∑
i,j

Ni,jφiφ
>
j , ‖N‖F = 1

 .

by definition. We now group the terms of E[M2] and bound them separately.

M2 =
∑
i

N2
i,iφiφ

>
i ‖φi‖2 +

∑
i 6=j

N2
i,jφiφ

>
j 〈φi, φj〉

+
∑
i 6=j 6=a

Ni,iNj,aφiφ
>
a 〈φi, φj〉+

∑
i 6=j 6=a6=b

Ni,jNa,bφiφ
>
b 〈φj , φa〉 (79)

We bound the terms individually now.
‖φ(i)‖4 terms: By properties of Dirichlet distribution we know

E[‖φ(i)‖4] = Θ(α̂−1
i ) ≤ O(α̂−1

min).

Thus, for the first term in (79), we have

sup
N :‖N‖F=1

‖
∑
i

E[N2
i,iφiφ

>
i ‖φi]‖2‖ = O(α̂−1

min).

‖φ(i)‖3 · ‖φ(j)‖ terms: We have

‖E[
∑
i,j

Ni,iNi,jφ(i)3φ(j)]‖ ≤ E[‖φi‖2·‖φj‖] ≤ O(

√∑
i,j

(N2
i,iα̂(j))

∑
i,j

N2
i,jα̂(i)−1) ≤ O(α̂

−1/2
min ).

‖φ(i)‖2 · ‖φ(j)‖2 terms: the total number of such terms is O(k2) and we have

E[‖φ(i)‖2 · ‖φ(j)‖2] = Θ(1),

and thus the Frobenius norm of these set of terms is smaller than O(k)
‖φ(i)‖2 · ‖φ(j)‖ · ‖φ(a)‖ terms: there are O(k3) such terms, and we have

‖E[φ(i)‖2 · ‖φ(j)‖ · ‖φ(a)]‖ = Θ(α̂(i2)1/2α̂(i3)1/2).

The Frobenius norm of this part of matrix is bounded by

O

√ ∑
i,j,a∈[k]

α̂(j)α̂(a)

 ≤ O(
√
k)

√∑
j

∑
a

α̂jα̂a ≤ O(
√
k).

the rest: the sum is

E[
∑

i 6=j 6=a6=b
Ni,jNa,bα̂(i)1/2α̂(j)1/2α̂(a)1/2α̂(b)1/2].

It is easy to break the bounds into the product of two sums (
∑

i,j and
∑

a,b) and then bound
each one by Cauchy-Schwartz, the result is 1.
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Hence the variance term in Matrix Bernstein’s inequality can be bounded by σ2 ≤
O(nα̂−2

min), each term has norm at most α̂
−3/2
min . When α̂−2

min < n we know the variance term
dominates and the spectral norm of the difference is at most O(α̂−1

minn
−1/2

√
log n/δ) with

probability 1− δ.

C.4 Basic Results on Spectral Concentration of Adjacency Matrix

Let n := max(|A|, |X|).

Lemma 21 (Concentration of Gα0
X,A) When πi ∼ Dir(α), for i ∈ V , with probability

1− 4δ,

εG := ‖Gα0
X,A − E[(Gα0

X,A)>|Π]‖ = O

(√
(α0 + 1)n · (max

i
(Pα̂)i)(1 + ε2) log

n

δ

)
(80)

Proof: From definition of Gα0
X,A, we have

εG ≤
√
α0 + 1‖GX,A − E[GX,A|Π]‖+ (

√
α0 + 1− 1)

√
|X|‖µX,A − E[µX,A|Π]‖.

We have concentration for µX,A and adjacency submatrix GX,A from Lemma 22. �

We now provide concentration bounds for adjacency sub-matrix GX,A from partition
X to A and the corresponding mean vector. Recall that E[µX→A|FA, πX ] = FAπX and
E[µX→A|FA] = FAα̂.

Lemma 22 (Concentration of adjacency submatrices) When πi
iid∼ Dir(α) for i ∈ V ,

with probability 1− 2δ,

‖GX,A − E[GX,A|Π]‖ = O

(√
n · (max(max

i
(Pα̂)i,max

i
(P>α̂)i))(1 + ε2) log

n

δ

)
. (81)

‖µA − E[µA|Π]‖ = O

(
1

|X|

√
n · (max(max

i
(Pα̂)i,max

i
(P>α̂)i))(1 + ε2) log

n

δ

)
, (82)

where ε2 is given by (87).

Proof: Recall E[GX,A|Π] = FAΠX and GA,X = Ber(FAΠX) where Ber(·) denotes the
Bernoulli random matrix with independent entries. Let

Zi := (G>i,A − FAπi)e>i .

We have G>X,A − FAΠX =
∑

i∈X Zi. We apply matrix Bernstein’s inequality.

We compute the variances
∑

i E[ZiZ
>
i |Π] and

∑
i E[Z>i Zi|Π]. We have that

∑
i E[ZiZ

>
i |Π]

only the diagonal terms are non-zero due to independence of Bernoulli variables, and

E[ZiZ
>
i |Π] ≤ Diag(FAπi) (83)
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entry-wise. Thus,

‖
∑
i∈X

E[ZiZ
>
i |Π]‖ ≤ max

a∈A

∑
i∈X,b∈[k]

FA(a, b)πi(b)

= max
a∈A

∑
i∈X,b∈[k]

FA(a, b)ΠX(b, i)

≤ max
c∈[k]

∑
i∈X,b∈[k]

P (b, c)ΠX(b, i)

= ‖P>ΠX‖∞. (84)

Similarly ‖
∑

i∈X E[Z>i Zi]‖ =
∑

i∈X Diag(E[‖G>i,A − FAπi‖2]) ≤ ‖P>ΠX‖∞. On lines of

Lemma 27, we have ‖P>ΠX‖∞ = O(|X| · (maxi(P
>α̂)i)) when |X| satisfies (71).

We now bound ‖Zi‖. First note that the entries in Gi,A are independent and we can use
the vector Bernstein’s inequality to bound ‖Gi,A−FAπi‖. We have maxj∈A |Gi,j−(FAπi)j | ≤
2 and

∑
j E[Gi,j − (FAπi)j ]

2 ≤
∑

j(FAπi)j ≤ ‖FA‖1. Thus with probability 1− δ, we have

‖Gi,A − FAπi‖ ≤ (1 +
√

8 log(1/δ))
√
‖FA‖1 + 8/3 log(1/δ).

Thus, we have the bound that ‖
∑

i Zi‖ = O(max(
√
‖FA‖1,

√
‖P>ΠX‖∞)). The concen-

tration of the mean term follows from this result. �

We now provide spectral bounds on E[(Gα0
X,A)>|Π]. Define

ψi := Diag(α̂)−1/2(
√
α0 + 1πi − (

√
α0 + 1− 1)µ). (85)

Let ΨX be the matrix with columns ψi, for i ∈ X. We have

E[(Gα0
X,A)>|Π] = FA Diag(α̂)1/2ΨX ,

from definition of E[(Gα0
X,A)>|Π].

Lemma 23 (Spectral bounds) With probability 1− δ,

ε1 := ‖I − |X|−1ΨXΨ>X‖ ≤ O

(√
(α0 + 1)

α̂min|X|
· log

k

δ

)
(86)

With probability 1− 2δ,

‖E[(Gα0
X,A)>|Π]‖ = O

(
‖P‖α̂max

√
|X||A|(1 + ε1 + ε2)

)
σmin

(
E[(Gα0

X,A)>|Π]
)

= Ω

α̂min

√
|A||X|
α0 + 1

(1− ε1 − ε3) · σmin(P )·

 ,

where

ε2 := O

((
1

|A|α̂2
max

log
k

δ

)1/4
)
, ε3 := O

((
(α0 + 1)2

|A|α̂2
min

log
k

δ

)1/4
)
. (87)
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Remark: When partitions X,A satisfy (71), ε1, ε2, ε3 are small.
Proof: Note that ψi is a random vector with norm bounded by O(

√
(α0 + 1)/α̂min) from

Lemma 27 and E[ψiψ
>
i ] = I. We now prove (86). using Matrix Bernstein Inequality. Each

matrix ψiψ
>
i /|X| has spectral norm at most O((α0 + 1)/α̂min|X|). The variance σ2 is

bounded by∥∥∥∥∥ 1

|X|2
E[
∑
i∈X
‖ψi‖2 ψiψ>i ]

∥∥∥∥∥ ≤
∥∥∥∥∥ 1

|X|2
max ‖ψi‖2 E[

∑
i∈X

ψiψ
>
i ]

∥∥∥∥∥ ≤ O((α0 + 1)/α̂min|X|).

Since O((α0 + 1)/αmin|X|) < 1, the variance dominates in Matrix Bernstein’s inequality.
Let B := |X|−1ΨXΨ>X . We have with probability 1− δ,

σmin(E[(Gα0
X,A)>|Π]) =

√
|X|σmin(FA Diag(α̂)1/2BDiag(α̂)1/2F>A ),

= Ω(
√
α̂min|X|(1− ε1) · σmin(FA)).

From Lemma 27, with probability 1− δ,

σmin(FA) ≥

√ |A|α̂min

α0 + 1
−O((|A| log k/δ)1/4)

 · σmin(P ).

Similarly other results follow. �

C.5 Properties of Dirichlet Distribution

In this section, we list various properties of Dirichlet distribution.

C.5.1 Sparsity Inducing Property

We first note that the Dirichlet distribution Dir(α) is sparse depending on values of αi,
which is shown in Telgarsky (2012).

Lemma 24 Let reals τ ∈ (0, 1], αi > 0, α0 :=
∑

i αi and integers 1 ≤ s ≤ k be given. Let
(Xi, . . . , Xk) ∼ Dir(α). Then

Pr
[
|{i : Xi ≥ τ}| ≤ s

]
≥ 1− τ−α0e−(s+1)/3 − e−4(s+1)/9,

when s+ 1 < 3k.

We now show that we obtain good initialization vectors under Dirichlet distribution.
Arrange the α̂j ’s in ascending order, i.e., α̂1 = α̂min ≤ α̂2 . . . ≤ α̂k = α̂max. Recall that

columns vectors Ŵ>AG
>
i,A, for i /∈ A, are used as initialization vectors to the tensor power

method. We say that ui :=
Ŵ>AG

>
i,A

‖Ŵ>AG
>
i,A‖

is a (γ,R0)-good initialization vector corresponding

to j ∈ [k] if
|〈ui,Φj〉| ≥ R0, |〈ui,Φj〉| −max

m<j
|〈ui,Φm〉| ≥ γ |〈ui,Φj〉| , (88)

where Φj := α̂
1/2
j (F̃A)j , where (F̃A)j is the jth column of F̃A := W>A FA. Note that the {Φj}

are orthonormal and are the eigenvectors to be estimated by the tensor power method.
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Lemma 25 (Good initialization vectors under Dirichlet distribution) When

πi
iid∼ Dir(α), and αj < 1, let

∆ := O

(
ζρ√
nr0

)
. (89)

For j ∈ [k], there is at least one (γ − 2∆
r0−∆ , r0 −∆)-good vector corresponding to each Φj,

for j ∈ [k], among {ui}i∈[n] with probability 1− 9δ, when

n = Ω̃
(
α−1

mine
r0α̂

1/2
max(α0+c1

√
kα0)(2k)r0c2 log(k/δ)

)
, (90)

where c1 := (1 +
√

8 log 4) and c2 := 4/3(log 4), when

(1− γ)r0α̂
1/2
min(α0 + (1 +

√
8 log 4)

√
kα0 + 4/3(log 4)α̂

−1/2
min log 2k) > 1. (91)

When α0 < 1, the bound can be improved for r0 ∈ (0.5, (α0 + 1)−1) and 1− γ ≥ 1−r0
r0

as

n >
(1 + α0)(1− r0α̂min)

α̂min(αmin + 1− r0(α0 + 1))
log(k/δ). (92)

Remark: (when α0 ≥ 1, α0 = Θ(1)) When r0 is chosen as r0 = α
−1/2
max (

√
α0 + c1

√
k)−1,

the term er0α̂
1/2
max(α0+c1

√
kα0) = e, and we require

n = Ω̃
(
α−1

mink
0.43 log(k/δ)

)
, r0 = α−1/2

max (
√
α0 + c1

√
k)−1, (93)

by substituting c2/c1 = 0.43. Moreover, (91) is satisfied for the above choice of r0 when
γ = Θ(1).

In this case we also need ∆ < r0/2, which implies

ζ = O

( √
n

ρkα̂max

)
(94)

Remark: (when α0 < 1) In this regime, (92) implies that we require n = Ω(α̂−1
min). Also,

r0 is a constant, we just need ζ = O(
√
n/ρ).

Proof: Define ũi := W>A FAπi/‖W>A FAπi‖, when whitening matrix WA and FA corre-
sponding to exact statistics are input.

We first observe that if ũi is (γ, r0) good, then ui is (γ − 2∆
r0−∆ , r0 −∆) good.

When ũi is (γ, r0) good, note that W>A FAπi ≥ α̂
−1/2
max r0 since σmin(W>A FA) = α̂

−1/2
max and

‖πi‖ ≥ r0. Now with probability 1/4, conditioned on πi, we have the event B(i),

B(i) := {‖ui − ũi‖ ≤ ∆},

where ∆ is given by

∆ = Õ

(
α̂0.5

max

√
(α0 + 1)(maxi(Pα̂)i)

r0n1/2α̂1.5
minσmin(P )

)

2300



A Tensor Approach to Learning Mixed Membership Community Models

from Lemma 19. Thus, we have P[B(i)|πi] ≥ 1/4, i.e., B(i) occurs with probability 1/4 for
any realization of πi.

If we perturb a (γ, r0) good vector by ∆ (while maintaining unit norm), then it is still
(γ − 2∆

r0−∆ , r0 −∆) good.
We now show that the set {ũi} contains good initialization vectors when n is large

enough. Consider Yi ∼ Γ(αi, 1), where Γ(·, ·) denotes the Gamma distribution and we have
Y/
∑

i Yi ∼ Dir(α). We first compute the probability that ũi := W>A FAπi/‖W>A FAπi‖ is a
(r0, γ)-good vector with respect to j = 1 (recall that α̂1 = α̂min). The desired event is

A1 := (α̂
−1/2
1 Y1 ≥ r0

√∑
j

α̂−1
j Y 2

j ) ∩ (α̂
−1/2
1 Y1 ≥

1

1− γ
max
j>1

α̂
−1/2
j Yj) (95)

We have

P [A1] ≥ P

(α̂
−1/2
min Y1 ≥ r0

√∑
j

α̂−1
j Y 2

j ) ∩ (Y1 ≥
1

1− γ
max
j>1

Yj)


≥ P

(α̂
−1/2
min Y1 > r0t)

⋂
(
∑
j

α̂−1
j Y 2

j ≤ t2)
⋂
j>1

(Y1 ≤ (1− γ)r0tα̂
1/2
min)

 , for some t

≥ P
[
α̂
−1/2
min Y1 > r0t

]
P

∑
j

α̂−1
j Y 2

j ≤ t2
∣∣∣α̂−1/2
j Yj ≤ (1− γ)r0tα̂

1/2
min


P
[
max
j>1

Yj ≤ (1− γ)r0tα̂
1/2
min

]

≥ P
[
α̂
−1/2
min Y1 > r0t

]
P

∑
j

α̂−1
j Y 2

j ≤ t2
P

[
max
j>1

Yj ≤ (1− γ)r0tα̂
1/2
min

]
.

When αj ≤ 1, we have
P[∪jYj ≥ log 2k] ≤ 0.5,

since P (Yj ≥ t) ≤ tαj−1e−t ≤ e−t when t > 1 and αj ≤ 1. Applying vector Bernstein’s
inequality, we have with probability 0.5− e−m that

‖Diag(α̂
−1/2
j )(Y − E(Y ))‖2 ≤ (1 +

√
8m)

√
kα0 + 4/3mα̂

−1/2
min log 2k,

since E[
∑

j α̂
−1
j Var(Yj)] = kα0 since α̂j = αj/α0 and Var(Yj) = αj . Thus, we have

‖Diag(α̂
−1/2
j )Y ‖2 ≤ α0 + (1 +

√
8m)

√
kα0 + 4/3mα̂

−1/2
min log 2k,

since ‖Diag(α̂
−1/2
j )E(Y )‖2 =

√∑
j α̂
−1
j α2

j = α0. Choosing m = log 4, we have with proba-

bility 1/4 that

‖Diag(α̂
−1/2
j )Y ‖2 ≤ t := α0 + (1 +

√
8 log 4)

√
kα0 + 4/3(log 4)α̂

−1/2
min log 2k, (96)

= α0 + c1

√
kα0 + c2α̂

−1/2
min log 2k. (97)
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We now have

P
[
α̂
−1/2
min Y1 > r0t

]
≥ αmin

4C

(
r0tα̂

1/2
min

)αmin−1
e−r0tα̂

1/2
min ,

from Lemma 28.
Similarly,

P
[
max
j 6=1

Yj ≤ α̂1/2
min(1− γ)r0t

]
≥ 1−

∑
j

(
(1− γ)r0tα̂

1/2
min

)∑
j αj−1

e−(1−γ)r0α̂
1/2
mint

≥ 1− ke−(1−γ)r0α̂
1/2
mint,

assuming that (1− γ)r0α̂
1/2
mint > 1.

Choosing t as in (96), we have the probability of the event in (95) is greater than

αmin

16C

(
1− e−(1−γ)r0α̂

1/2
min(α0+c1

√
kα0)

2(2k)(1−γ)r0c2−1

)
e−r0α̂

1/2
min(α0+c1

√
kα0)

(2k)r0c2

·
(
r0α̂

1/2
min(α0 + c1

√
kα0 + c2α̂

−1/2
min log 2k)

)αmin−1
.

Similarly the (marginal) probability of events A2 can be bounded from below by replacing
αmin with α2 and so on. Thus, we have

P[Am] = Ω̃

(
αmin

e−r0α̂
1/2
max(α0+c1

√
kα0)

(2k)r0c2

)
,

for all m ∈ [k].
Thus, we have each of the events A1(i)∩B(i),A2(i)∩B(i), . . . ,Ak ∩B(i) occur at least

once in i ∈ [n] i.i.d. tries with probability

1− P

 ⋃
j∈[k]

(
⋂
i∈[n]

(Aj(i) ∩ B(i))c)


≥ 1−

∑
j∈[k]

P

 ⋂
i∈[n]

(Aj(i)− B(i))c


≥ 1−

∑
j∈[k]

exp [−nP(Aj ∩ B)] ,

≥ 1− k exp

[
−nΩ̃

(
αmin

e−r0α̂
1/2
max(α0+c1

√
kα0)

(2k)r0c2

)]
,

where Aj(i) denotes the event that A1 occurs for ith trial and we have that P[B|Aj ] ≥ 0.25
since B occurs in any trial with probability 0.25 for any realization of πi and the events Aj
depend only on πi. We use that 1− x ≤ e−x when x ∈ [0, 1]. Thus, for the event to occur
with probability 1− δ, we require

n = Ω̃
(
α−1

mine
r0α̂

1/2
max(α0+c1

√
kα0)(2k)r0c2 log(1/δ)

)
.
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We can improve the above bound by directly working with the Dirichlet distribution.
Let π ∼ Dir(α). The desired event corresponding to j = 1 is given by

A1 =

(
α̂
−1/2
1 π1

‖Diag(α̂
−1/2
i )π‖

≥ r0

)⋂
i>1

(
π1 ≥

πi
1− γ

)
.

Thus, we have

P[A1] ≥ P

[
(π1 ≥ r0)

⋂
i>1

(πi ≤ (1− γ)r0)

]

≥ P[π1 ≥ r0]P

(⋂
i>1

πi ≤ (1− γ)r0|π1 ≥ r0

)
,

since P
(⋂

i>1 πi ≤ (1− γ)r0|π1 ≥ r0

)
≥ P

(⋂
i>1 πi ≤ (1− γ)r0

)
. By properties of Dirichlet

distribution, we know E[πi] = α̂i and E[π2
i ] = α̂i

αi+1
α0+1 . Let p := Pr[π1 ≥ r0]. We have

E[π2
i ] = pE[π2

i |πi ≥ r0] + (1− p)E[π2
i |πi < r0]

≤ p+ (1− p)r0E[πi|πi < r0]

≤ p+ (1− p)r0E[πi].

Thus, p ≥ α̂min(αmin+1−r0(α0+1))
(α0+1)(1−r0α̂min) , which is useful when r0(α0 + 1) < 1. Also when π1 ≥ r0,

we have that πi ≤ 1− r0 since πi ≥ 0 and
∑

i πi = 1. Thus, choosing 1− γ = 1−r0
r0

, we have
the other conditions for A1 are satisfied. Also, verify that we have γ < 1 when r0 > 0.5 and
this is feasible when α0 < 1. �

We now prove a result that the entries of πi, which are marginals of the Dirichlet
distribution, are likely to be small in the sparse regime of the Dirichlet parameters. Recall
that the marginal distribution of πi is distributed as B(αi, α0 − αi), where B(a, b) is the
beta distribution and

P[Z = z] ∝ za−1(1− z)b−1, Z ∼ B(a, b).

Lemma 26 (Marginal Dirichlet distribution in sparse regime) For Z ∼ B(a, b), the
following results hold:
Case b ≤ 1, C ∈ [0, 1/2]:

Pr[Z ≥ C] ≤ 8 log(1/C) · a

a+ b
, (98)

E[Z · δ(Z ≤ C)] ≤ C · E[Z] = C · a

a+ b
. (99)

Case b ≥ 1, C ≤ (b+ 1)−1: we have

Pr[Z ≥ C] ≤ a log(1/C), (100)

E[Z · δ(Z ≤ C)] ≤ 6aC. (101)
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Remark: The guarantee for b ≥ 1 is worse and this agrees with the intuition that the
Dirichlet vectors are more spread out (or less sparse) when b = α0 − αi is large.
Proof We have

E[Z · δ(Z ≤ C)] =

∫ C

0

1

B(a, b)
xa(1− x)b−1dx

≤ (1− C)b−1

B(a, b)

∫ C

0
xadx

=
(1− C)b−1Ca+1

(a+ 1)B(a, b)
.

For E[Z · δ(Z ≥ C)], we have,

E[Z · δ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)b−1dx

≥ Ca

B(a, b)

∫ 1

C
(1− x)b−1dx

=
(1− C)bCa

bB(a, b)
.

The ratio between these two is at least

E[Z · δ(Z ≥ C)]

E[Z · δ(Z ≤ C)]
≥ (1− C)(a+ 1)

bC
≥ 1

C
.

The last inequality holds when a, b < 1 and C < 1/2. The sum of the two is exactly E[Z],
so when C < 1/2 we know E[Z · δ(Z ≤ C)] < C · E[Z].

Next we bound the probability Pr[Z ≥ C]. Note that Pr[Z ≥ 1/2] ≤ 2E[Z] = 2a
a+b by

Markov’s inequality. Now we show Pr[Z ∈ [C, 1/2]] is not much larger than Pr[Z ≥ 1/2] by
bounding the integrals.

A =

∫ 1

1/2
xa−1(1− x)b−1dx ≥

∫ 1

1/2
(1− x)b−1dx = (1/2)b/b.

B =

∫ 1/2

C
xa−1(1− x)b−1 ≤ (1/2)b−1

∫ 1/2

C
xa−1dx

≤ (1/2)b−1 0.5a − Ca

a

≤ (1/2)b−1 1− (1− a log 1/C)

a

= (1/2)b−1 log(1/C).

The last inequality uses the fact that ex ≥ 1 + x for all x. Now

Pr[Z ≥ C] = (1 +
B

A
) Pr[Z ≥ 1/2] ≤ (1 + 2b log(1/C))

2a

a+ b
≤ 8 log(1/C) · a

a+ b
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and we have the result.
When b ≥ 1, we have an alternative bound. We use the fact that if X ∼ Γ(a, 1) and

Y ∼ Γ(b, 1) then Z ∼ X/(X +Y ). Since Y is distributed as Γ(b, 1), its PDF is 1
Γ(b)x

b−1e−x.

This is proportional to the PDF of Γ(1) (e−x) multiplied by a increasing function xb−1.
Therefore we know Pr[Y ≥ t] ≥ PrY ′∼Γ(1)[Y

′ ≥ t] = e−t.
Now we use this bound to compute the probability that Z ≤ 1/R for all R ≥ 1.
This is equivalent to

Pr[
X

X + Y
≤ 1

R
] =

∫ ∞
0

Pr[X = x]Pr[Y ≥ (R− 1)X]dx

≥
∫ ∞

0

1

Γ(a)
xa−1e−Rxdx

= R−a
∫ ∞

0

1

Γ(a)
ya−1e−ydy

= R−a.

In particular, Pr[Z ≤ C] ≥ Ca, which means Pr[Z ≥ C] ≤ 1− Ca ≤ a log(1/C).
For E[Zδ(Z < C)], the proof is similar as before:

P = E[Zδ(Z < C)] =

∫ C

0

1

B(a, b)
xa(1− x)bdx ≤ Ca+1

B(a, b)(a+ 1)
,

Q = E[Zδ(Z ≥ C)] =

∫ 1

C

1

B(a, b)
xa(1− x)bdx ≥ Ca(1− C)b+1

B(a, b)(b+ 1)
.

Now E[Zδ(Z ≤ C)] ≤ P
QE[Z] ≤ 6aC when C < 1/(b+ 1).

C.5.2 Norm Bounds

Lemma 27 (Norm Bounds under Dirichlet distribution) For πi
iid∼ Dir(α) for i ∈ A,

with probability 1− δ, we have

σmin(ΠA) ≥

√
|A|α̂min

α0 + 1
−O((|A| log k/δ)1/4),

‖ΠA‖ ≤
√
|A|α̂max +O((|A| log k/δ)1/4),

κ(ΠA) ≤

√
(α0 + 1)α̂max

α̂min
+O((|A| log k/δ)1/4).

This implies that ‖FA‖ ≤ ‖P‖
√
|A|α̂max, κ(FA) ≤ O(κ(P )

√
(α0 + 1)α̂max/α̂min). More-

over, with probability 1− δ

‖FA‖1 ≤ |A| ·max
i

(Pα̂)i +O

(
‖P‖

√
|A| log

|A|
δ

)
. (102)
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Remark: When |A| = Ω

(
log k

δ

(
α0+1
α̂min

)2
)

, we have σmin(ΠA) = Ω(
√
|A|α̂min

α0+1 ) with proba-

bility 1− δ for any fixed δ ∈ (0, 1).
Proof: Consider ΠAΠ>A =

∑
i∈A πiπ

>
i .

1

|A|
E[ΠAΠ>A] =Eπ∼Dir(α)[ππ

>]

=
α0

α0 + 1
α̂α̂> +

1

α0 + 1
Diag(α̂),

from Proposition 29. The first term is positive semi-definite so the eigenvalues of the
sum are at least the eigenvalues of the second component. Smallest eigenvalue of second
component gives lower bound on σmin(E[ΠAΠ>A]). The spectral norm of the first component
is bounded by α0

α0+1 ‖α̂‖ ≤
α0
α0+1 α̂max, the spectral norm of second component is 1

α0+1αmax.

Thus
∥∥E[ΠAΠ>A]

∥∥ ≤ |A| · α̂max.
Now applying Matrix Bernstein’s inequality to 1

|A|
∑

i

(
πiπ
>
i − E[ππ>]

)
. We have that

the variance is O(1/|A|). Thus with probability 1− δ,∥∥∥∥ 1

|A|

(
ΠAΠ>A − E[ΠAΠ>A]

)∥∥∥∥ = O

(√
log(k/δ)

|A|

)
.

For the result on F , we use the property that for any two matrices A,B, ‖AB‖ ≤ ‖A‖ ‖B‖
and κ(AB) ≤ κ(A)κ(B).

To show bound on ‖FA‖1, note that each column of FA satisfies E[(FA)i] = 〈α̂, (P )i〉 1>,
and thus ‖E[FA]‖1 ≤ |A|maxi(Pα̂)i. Using Bernstein’s inequality, for each column of FA,
we have, with probability 1− δ,

∣∣ ‖(FA)i‖1 − |A|
〈
α̂, (P )i

〉∣∣ = O

(
‖P‖

√
|A| log

|A|
δ

)
,

by applying Bernstein’s inequality, since |
〈
α̂, (P )i

〉
| ≤ ‖P‖, and thus we have∑

i∈A ‖E[(P )jπiπ
>
i ((P )j)>]‖, and

∑
i∈A ‖E[π>i ((P )j)>(P )jπi]‖ ≤ |A| · ‖P‖. �

C.5.3 Properties of Gamma and Dirichlet Distributions

Recall Gamma distribution Γ(α, β) is a distribution on nonnegative real values with density
function βα

Γ(α)x
α−1e−βx.

Proposition 28 (Dirichlet and Gamma distributions) The following facts are known
for Dirichlet distribution and Gamma distribution.

1. Let Yi ∼ Γ(αi, 1) be independent random variables, then the vector
(Y1, Y2, ..., Yk)/

∑k
i=1 Yk is distributed as Dir(α).

2. The Γ function satisfies Euler’s reflection formula: Γ(1− z)Γ(z) ≤ π/ sinπz.

3. The Γ(z) ≥ 1 when 0 < z < 1.
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4. There exists a universal constant C such that Γ(z) ≤ C/z when 0 < z < 1.

5. For Y ∼ Γ(α, 1) and t > 0 and α ∈ (0, 1), we have

α

4C
tα−1e−t ≤ Pr[Y ≥ t] ≤ tα−1e−t, (103)

and for any η, c > 1, we have

P[Y > ηt|Y ≥ t] ≥ (cη)α−1e−(η−1)t. (104)

Proof: The bounds in (103) is derived using the fact that 1 ≤ Γ(α) ≤ C/α when α ∈ (0, 1)
and ∫ ∞

t

1

Γ(αi)
xαi−1e−xdx ≤ 1

Γ(αi)

∫ ∞
t

tαi−1e−xdx ≤ tαi−1e−t,

and∫ ∞
t

1

Γ(αi)
xαi−1e−xdx ≥ 1

Γ(αi)

∫ 2t

t
xαi−1e−xdx ≥ αi/C

∫ 2t

t
(2t)αi−1e−xdx ≥ αi

4C
tαi−1e−t.

�

Proposition 29 (Moments under Dirichlet distribution) Suppose v ∼ Dir(α), the
moments of v satisfies the following formulas:

E[vi] =
αi
α0

E[v2
i ] =

αi(αi + 1)

α0(α0 + 1)

E[vivj ] =
αiαj

α0(α0 + 1)
, i 6= j.

More generally, if a(t) =
∏t−1
i=0(a+ i), then we have

E[

k∏
i=1

v
(ai)
i ] =

∏k
i=1 α

(ai)
i

α
(
∑k
i=1 ai)

0

.

C.6 Standard Results

C.6.1 Bernstein’s Inequalities

One of the key tools we use is the standard matrix Bernstein inequality (Tropp, 2012, thm.
1.4).

Proposition 30 (Matrix Bernstein Inequality) Suppose Z =
∑

jWj where

1. Wj are independent random matrices with dimension d1 × d2,

2. E[Wj ] = 0 for all j,
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3. ‖Wj‖ ≤ R almost surely.

Let d = d1 + d2, and σ2 = max
{∥∥∥∑j E[WjW

>
j ]
∥∥∥ , ∥∥∥∑j E[W>j Wj ]

∥∥∥}, then we have

Pr[‖Z‖ ≥ t] ≤ d · exp
{
−t2/2

σ2 +Rt/3

}
.

Proposition 31 (Vector Bernstein Inequality) Let z = (z1, z2, ..., zn) ∈ Rn be a ran-
dom vector with independent entries, E[zi] = 0, E[z2

i ] = σ2
i , and Pr[|zi| ≤ 1] = 1. Let

A = [a1|a2| · · · |an] ∈ Rm×n be a matrix, then

Pr[‖Az‖ ≤ (1 +
√

8t)

√√√√ n∑
i=1

‖ai‖2 σ2
i + (4/3) max

i∈[n]
‖ai‖ t] ≥ 1− e−t.

C.6.2 Vector Chebyshev Inequality

We will require a vector version of the Chebyshev inequality Ferentios (1982).

Proposition 32 Let z = (z1, z2, ..., zn) ∈ Rn be a random vector with independent entries,
E[zi] = µ, σ := ‖Diag(E[(z − µ)>(z − µ)])‖. Then we have that

P[‖z − µ‖ > tσ] ≤ t−2.

C.6.3 Wedin’s Theorem

We make use of Wedin’s theorem to control subspace perturbations.

Lemma 33 (Wedin’s theorem; Theorem 4.4, p. 262 in Stewart and Sun (1990).)
Let A,E ∈ Rm×n with m ≥ n be given. Let A have the singular value decomposition U>1

U>2
U>3

A [ V1 V2

]
=

 Σ1 0
0 Σ2

0 0

 .
Let Ã := A+E, with analogous singular value decomposition (Ũ1, Ũ2, Ũ3, Σ̃1, Σ̃2, Ṽ1Ṽ2). Let
Φ be the matrix of canonical angles between range(U1) and range(Ũ1), and Θ be the matrix
of canonical angles between range(V1) and range(Ṽ1). If there exists δ, α > 0 such that
mini σi(Σ̃1) ≥ α+ δ and maxi σi(Σ2) ≤ α, then

max{‖ sin Φ‖2, ‖ sin Θ‖2} ≤
‖E‖2
δ

.
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