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1. Introduction
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Learning from unlabeled data

Many applications of machine learning
I Lots of high-dimensional data.
I Mostly unlabeled—i.e., not annotated with prediction target.

What kinds of structure can we learn from unlabeled data?
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Examples from natural language processing

I Example 1: Language models

P(colorless green ideas sleep furiously)
P(furiously sleep ideas green colorless)

� 1

I Example 2: Word sense disambiguation(
“bank”, {“stocks”, “bonds”, . . . }

)
vs.

(
“bank”, {“river”, “freshwater”, . . . }

)
I Example 3: “Word classes”

e.g., {“apple”, “pear”, . . . }, {“Apple”, “IBM”, . . . },
{“bought”, “run”, . . . }, {“of”, “in”, . . . }, . . .

Doesn’t require any direct supervision to learn!
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Word class models

Brown, Della Pietra, deSouza, Lai, and Mercer (1992):
“Class based n-gram models of natural language”

I Brown clustering: clustering a vocabulary into word classes
using the Brown clustering algorithm

class 1 class 2 class 3 · · ·
feet people water
miles guys gas
pounds folks coal
degrees fellows liquid

...
...

...

Q: What do these word classes capture?
Not entirely clear, but . . .
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Structure from a language model

Semi-supervised Natural Language Processing:

1. Apply Brown clustering to large corpus of unlabeled text to
derive “lexical representations” (a.k.a. word representations).

2. Augment existing NLP methods with lexical representations.

3. Win!
I Named-entity recognition (Miller et al, 2004; Turian et al, 2010)
I Dependency parsing (Koo et al, 2008)
I Language modeling? (Kneser and Ney, 1993; Gao et al, 2001)
I . . .

Our goal: Understand & build on the success of Brown clustering
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Our contributions
Motivating observation: Learning Brown word classes only
requires correlations between words & simple linguistic context.

What we do:
1. Propose a spectral algorithm for learning word classes in the

setting of Brown et al [Stratos, Kim, Collins, & H, UAI 2014]

I Algorithmically simple, amenable to theoretical analysis
I Empirically faster than Brown clustering algorithm

2. Address noise heteroskedasticity using variance stabilization
[Stratos, Collins, & H, ACL 2015]

I Theoretically understood in Brown et al setting
I Improves lexical representations for low-level NLP tasks

3. Assess ability of Brown word class model to capture real
linguistic structure—real test of unsupervised learning.
[Stratos, Collins, & H, TACL 2016]
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Talk outline

1. Spectral algorithm for learning word classes in the setting of
Brown et al
[Stratos, Kim, Collins, & H, UAI 2014]

2. Improved estimation using variance stabilization
[Stratos, Collins, & H, ACL 2015]

3. Using Brown word class model for unsupervised POS tagging
[Stratos, Collins, & H, TACL 2016]
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2. Examining the Brown word class model

9



The Brown et al word class model (parameters)

HMM with hidden state seq. (Ht) and observation seq. (Xt).

H1 H2 H3

X1 X2 X3

Hidden state space = word classes C := {1, 2, . . . , |C |}.
Observation space = vocabulary V := {1, 2, . . . , |V |}.
Column-stochastic parameters θ := (π,T ,O)

πh = Pθ[H1 = h] , h ∈ C ,

Tg ,h = Pθ

[
Ht+1 = g | Ht = h

]
, (g , h) ∈ C × C ,

Ox ,h = Pθ

[
Xt = x | Ht = h

]
, (x , h) ∈ V × C .
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The Brown et al word class model (structural restriction)
Brown et al word class model places structural restriction on O:

There is a hard clustering of vocabulary V into |C | groups
{Vh : h ∈ C} (the word classes) such that

x ∈ Vh =⇒ Pθ

[
Xt = x | Ht = g

]
= 0 for all g 6= h .

Each word can be generated by the hidden state corresponding to
its word class.

Sparsity pattern of
emission probablity matrix O

(after permuting rows)

11



Log-likelihood in the word class model
Max-likelihood parameters that respect clustering C is (up to consts.)
empirical mutual informaton bet. word classes of adjacent words

∑
t

∑
g ,h

P̂r
[
C(Xt) = g , C(Xt+1) = h

]
ln

P̂r
[
C(Xt) = g , C(Xt+1) = h

]
P̂r
[
C(Xt) = g

]
P̂r
[
C(Xt+1) = h

] .
Under the Brown word class model:

max log-likelihood ⇔ max M̂Is between classes of adjacent words

Not clear how to efficiently maximize w.r.t. clustering C.

Brown clustering algorithm (Brown et al, 1992):
I Start with each word in its own class.
I Repeat: merge class pair that decreases M̂Is the least.

Output: a hierarchy of word classes.
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Output of Brown clustering algorithm

0

00

000

apple

001

pear

01

010

Apple

011

IBM

1

10

100

bought

101

run

11

110

of

111

in

Get lexical representations from a pruning of the hierarchy:
apple → 00 bought → 10
pear → 00 run → 10
Apple → 01 of → 11
IBM → 01 it → 11

Use in NLP: augmenting text data with lexical representations
increases ability for (supervised) ML methods to learn other
linguistic structure.
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Word classes from observable quantities
Our aim: extract word classes directly from observable quantities.

Theorem (Stratos, Kim, Collins, and H, 2014)
Define matrix B ∈ RV×V

Bx ,y :=
n−1∑
t=1

Pθ(Xt = x , Xt+1 = y) .

If data follow a Brown model distribution, then left singular vectors
of B “reveal” the word classes (after row normalization).

B can be estimated directly from raw collection of sentences.
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Spectral algorithm for Brown clustering

Spectral algorithm for Brown clustering
1. Form estimate B̂ of B matrix, e.g.,

B̂x ,y :=
n−1∑
t=1

P̂r(Xt = x , Xt+1 = y) ,

and compute its rank-|C | thin SVD ÛŜV̂
>
.

2. For each x ∈ V , let qx be the corresponding row in Û ,
normalized to have unit length.

3. Apply agglomerative clustering (e.g., average-linkage) to
vectors {qx : x ∈ V }.

Output: a hierarchy of word classes.

Bonus: Main computational bottleneck (SVD) is a well-studied
numerical linear algebra problem with highly-optimized solutions.
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Improvements

Context Xt+1 is “linguistic context” for Xt .
Can also use richer context
e.g., (Xt−2,Xt−1,Xt+1,Xt+2)
(two words before, two words after).

Transforms Main Theorem holds even if we apply certain linear
transformations to B.
Does not change core structural properties,
but may improve conditioning.
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Empirical study

Both Brown clustering and spectral algorithm provide (hierarchy of)
word classes.

0

00

000

apple

001

pear

01

010

Apple

011

IBM

1

10

100

bought

101

run

11

110

of

111

in

Questions:
1. How does spectral algorithm compare to Brown clustering on

Brown clustering objective (M̂I between adjacent classes)?
2. How does spectral algorithm compare to Brown clustering in

utility of lexical representations?
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Question 1: Brown clustering objective

Data: RCV1 news articles (205M tokens).

Method: Compare Brown clustering with Spectral algorithm, both
with |C | = 1000 classes.

Algorithm |V | M̂I Time
Spectral 50K 1.48 0.37h

300K 1.54 2.07h
Brown 50K 1.52 3.62h

300K 1.60 22.33h

18



Question 2: Utility of lexical representations

Data: News articles for CoNLL 2003 Named Entity Recognition
shared task.

Method: Using |C | = 1000 lexical representations from RCV1,
with Perceptron + greedy decoding (Ratinov and Roth, 2009).
(Standard semi-supervised approach to this NLP problem.)

Algorithm |V | dev F1 test F1
Baseline 90.03 84.39
Spectral 50K 92.00 86.72

300K 92.31 87.76
Brown 50K 92.00 88.56

300K 92.68 88.76
(There is known discrepancy between dev & test sets here.)

19



Observations

I Spectral algorithm much faster than Brown clustering in terms
of wall-clock time (up to 10× speed-up).

I Spectral algorithm lags Brown clustering in terms of Brown
clustering objective (M̂I).

I Both algorithms provide lexical representations that deliver
comparable improvements over baseline.

Major limitation: Hard-clustering forces a class to capture all
senses of any member word.

Possible fix: Skip the clustering step! Directly use representation
given by left singular vectors of B̂.
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3. Dealing with noise heteroskedasticity
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Motivation

I Main estimation task in spectral algorithm is estimating
word/context pairs frequencies B
(more specifically, the left singular vectors of B).

I How can we do better on this estimation task?

I Challenge: many word/context pairs have very different
frequencies, and hence very different “estimation noise
variance”.

22



Basic spectral algorithm

Simplified setting: word is X , context is Y .

Basic spectral algorithm:
I Use raw co-occurrence counts from N sentences

B̂x ,y := #(X = x , Y = y)

(ignoring normalization).

I Decompose into low-rank factors using SVD, i.e., minimize

min
L∈RV×C ,
R∈RV×C

‖LR> − B̂‖2F .
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Possible improvement

Since “noise” B̂ − B is highly heteroskedastic, could be better to
minimize variance-normalized squared error

min
L∈RV×C ,
R∈RV×C

∑
x ,y

1

var(B̂x ,y )

(
(LR>)x ,y − B̂x ,y

)2
.

(C.f. weighted least squares.)

However, weighted objective is hard to minimize (Srebro et al, 2003).
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A statistical trick

Square-root trick: Instead of using B̂, use
√

B̂
(element-wise square-root of B̂).

Asymptotic justification:

I Poisson approximation: when px ,y := Pr(X = x ,Y = y) is
small compared to 1/N, approximately have

B̂x ,y ∼ Poi(N · px ,y ) .

I Variance stabilization: As N →∞,

var
(√

B̂x ,y

)
→ 1/4

(Bartlett, 1936; Anscombe, 1948).
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Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of
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B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ

=
1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Variance stabilization
A heuristic derivation via delta method:
For g(x) :=

√
x and X ∼ Poi(λ),

g(X ) ≈ g(E(X )) + g ′(E(X )) · (X − E(X ))

=
√
λ+

1
2
√
λ
· (X − λ) .

Therefore

var(g(X )) ≈
(

1
2
√
λ

)2

· var(X )

=
1
4λ
· λ =

1
4
.

So asymptotically, don’t need variance normalization.

Moreover, using
√

B̂ make senses in the Brown model:
Left singluar vectors of

√
B also reveal word classes, just like B’s.

26



Empirical study

Question: Does the Brown word class model capture the same
intrinsic qualities as other popular lexical representations?

I Synonyms: How well do cosine similarities between lexical
representations reflect human judgements?

I Analogies: How well do lexical representations provide answer
to analogy problems like

Canberra is to Australia, as London is to

based on cosine similarities:

argmax
x∈V

〈qx ,qAustralia〉 − 〈qx ,qCanberra〉+ 〈qx ,qLondon〉 .

Are these measures predictive of utility in extrinsic tasks?
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Data sources

I Training data: English Wikipedia, 1.4B tokens.

I Similarity tasks: Agirre et al’s “WordSim353”, Bruni et al’s
“MEN Test Collection”, and Stanford Rare Word Similarity
Dataset: (5.4K word pairs + human assessments)

Measure Pearson correlation with human assessments.

I Analogy tasks: Microsoft (Mikolov-Yih-Zweig) dataset of
“syntatic” analogies: (8000 questions)
Google (Mikolov et al) dataset of “syntatic” and “semantic”
analogies: 19544 questions

Measure word prediction accuracy.
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Results
Other methods (with same context Xt−2,Xt−1,Xt+1,Xt+2 as Spectral):

I Continous bag-of-words (Mikolov et al, 2013) in Word2Vec
I Skip-gram (Mikolov et al, 2013) in Word2Vec
I PPMI (Levy and Goldberg, 2014)

I Glove (Pennington, Socher, Manning, 2014)

Method dimension = 500 dimension = 1000
SIM MSFT GOOG SIM MSFT GOOG
(corr) (acc%) (acc%) (corr) (acc%) (acc%)

Spectral 0.572 39.68 57.64
Spectral+√ 0.655 68.38 74.17 0.650 66.08 76.38

CBOW 0.597 75.79 73.60 0.509 70.97 60.12
SKIP 0.642 81.08 78.73 0.641 79.98 83.35
PPMI 0.628 43.81 58.38 0.637 48.99 63.82
Glove 0.576 68.30 78.08 0.586 67.40 78.73
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Utility in extrinsic tasks

Directly use vectors qx as features in structured prediction for
Named Entity Recognition (again, CoNLL 2003 shared task).

Method 30 dimensions 50 dimensions
dev F1 test F1 dev F1 test F1

Baseline 90.03 84.39 90.03 84.39
Brown 92.49 88.75 92.49 88.75

Spectral+√ 92.88 89.28 92.94 89.01
CBOW 92.44 88.34 92.83 89.21
SKIP 92.63 88.78 93.11 89.32
PPMI 92.25 89.27 92.53 89.37
Glove 91.49 87.16 91.58 86.80

(There is known discrepancy between dev & test sets here.)

All improve over baseline; Spectral+√ is computationally cheapest.
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Observations

I Spectral performs well on similarity tasks, less competitive on
analogy tasks.

I Poor analogy performance doesn’t seem to hurt much for
extrinsic NER task.

Question: Which extrinsic tasks are analogy-adept lexical
representations especially good for?
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4. Unsupervised learning
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Capturing linguistic structure without supervision

What linguistic structure is captured by HMM?

I Hypothesis: Parts-of-Speech (e.g., noun, verb, adj)

I Test: Do word classes correspond to parts-of-speech?
Learn word class model, then measure “many-to-one accuracy”,
using true labels of words (e.g., from a dictionary).

I Folklore: maximum likelihood HMM is unlikely to yield states
that correspond to parts-of-speech.

Evidence: running (unsupervised) EM, initialized at HMM
learned with supervision, only makes things worse.

Upshot: Do not use likelihood to test the hypothesis.
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Linguistic context

Instead of likelihood, exploit linguistic context.
I Find HMM consistent with linguistic context (e.g., surrounding

words) and features (e.g., spelling features).

Our approach:
I Use spectral algorithm to derive lexical representation vectors.
I Apply farthest-first traversal to these vectors to pick “anchors”.
I Use Bayes’ rule + convex optimization to estimate HMM

parameters (previously proposed by Arora-Ge-Moitra, 2012).
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Some results

Data from universal treebank, 12 POS tag types

Many-to-one prediction accuracy
Method de en es fr id it ja
E-M 45.5 59.8 60.6 60.1 49.6 51.5 59.5
Brown 60.0 62.9 67.4 66.4 59.3 66.1 60.3

Spectral+√ 61.1 66.1 69.0 68.2 63.7 60.4 65.3
Spectral+√ +f 63.4 71.4 74.3 71.9 67.3 60.2 69.4

Log-linear 67.5 62.4 67.1 62.1 61.3 52.9 78.2

I Spectral+√ = just use prev/next words context.
I Spectral+√ +f = also uses spelling features.
I Log-linear (Berg-Kirkpatrick et al, 2010): not a HMM
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Final remarks

I Yet more confirmation that linguistic context is very powerful:

“We” already knew the information was there; just need
algorithmic/statistical techniques to fully exploit it.

I Brown et al word class model is surprisingly simple — an
obviously “wrong” model, but captures a lot of useful structure.

I Unclear what is the “right” intrinsic evaluation of lexical
representations.

Thank you!

36



Final remarks

I Yet more confirmation that linguistic context is very powerful:

“We” already knew the information was there; just need
algorithmic/statistical techniques to fully exploit it.

I Brown et al word class model is surprisingly simple — an
obviously “wrong” model, but captures a lot of useful structure.

I Unclear what is the “right” intrinsic evaluation of lexical
representations.

Thank you!

36



Final remarks

I Yet more confirmation that linguistic context is very powerful:

“We” already knew the information was there; just need
algorithmic/statistical techniques to fully exploit it.

I Brown et al word class model is surprisingly simple — an
obviously “wrong” model, but captures a lot of useful structure.

I Unclear what is the “right” intrinsic evaluation of lexical
representations.

Thank you!

36



Final remarks

I Yet more confirmation that linguistic context is very powerful:

“We” already knew the information was there; just need
algorithmic/statistical techniques to fully exploit it.

I Brown et al word class model is surprisingly simple — an
obviously “wrong” model, but captures a lot of useful structure.

I Unclear what is the “right” intrinsic evaluation of lexical
representations.

Thank you!

36



Final remarks

I Yet more confirmation that linguistic context is very powerful:

“We” already knew the information was there; just need
algorithmic/statistical techniques to fully exploit it.

I Brown et al word class model is surprisingly simple — an
obviously “wrong” model, but captures a lot of useful structure.

I Unclear what is the “right” intrinsic evaluation of lexical
representations.

Thank you!

36



37



Connection to anchor word assumption

Anchor word assumption (Arora, Ge, Moitra, 2012) is strictly weaker
than assumption in Brown word class model.

I For each hidden state h ∈ C , there is an “anchor” word x ∈ V
satisfying

Ox ,g = 0 for all g 6= h .

I For comparison, Brown model word class assumption requires
every word to be an “anchor”.

Stronger assumption can motivate different algorithmic choices
(e.g., clustering normalized rows of left singular vector matrix).
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Effect of representation

Data from English treebank, 12 POS tag types

Method dev acc
Anchor 53.4

Anchor+CCA 57.0
Anchor+Rand 48.2
Spectral+√ 66.1

I Anchor = Arora-Ge-Moitra “conditional probability”
representation.

I Anchor-CCA = same as Arora-Ge-Moitra, except apply CCA
projection to right-hand side (Cohen-Collins, 2014).

I Anchor-Rand = same as Arora-Ge-Moitra, except apply
random projection to right-hand side (Ding et al, 2013).
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