Statistical models and their algorithms

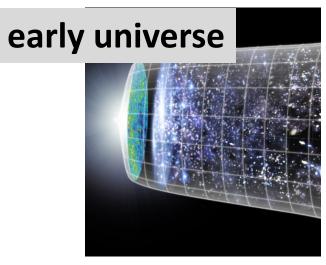
Daniel Hsu

Department of Computer Science & Data Science Institute
Columbia University

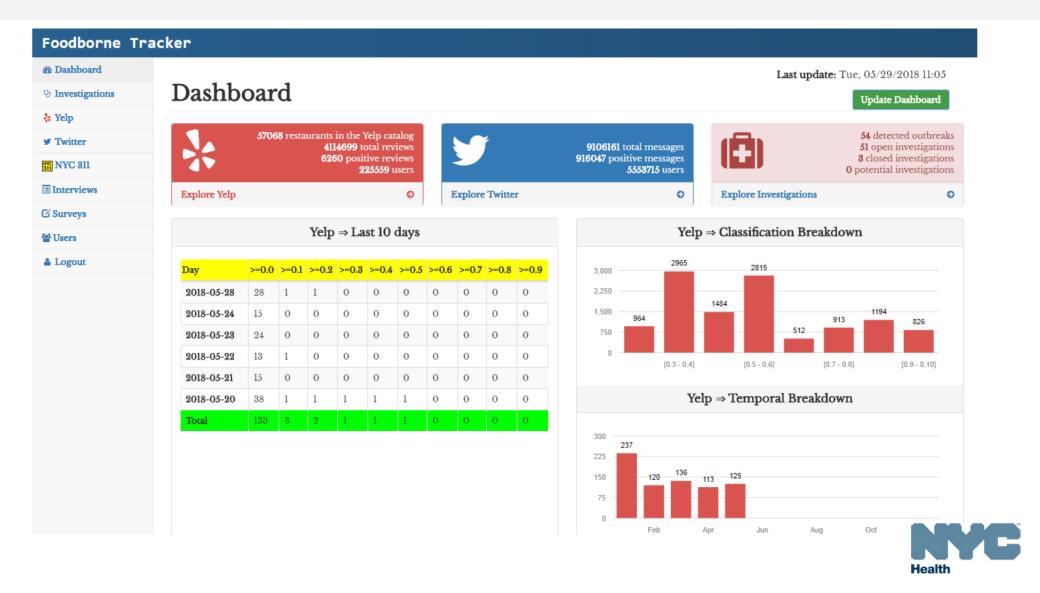
Science Research Fellows Seminar October 10, 2025

Some slides/figures borrowed from Katelynn Devinney, Roxana Geambasu, José Manuel Zorrilla Matilla

We use statistical models to make sense of the world ...


[Kandula, H., Shaman, 2017]

[Effland, Lawson, Balter, Devinney, Reddy, Waechter, Gravano, H., 2018]



[Lecuyer, Spahn, Spiliopoulos, Chaintreau, Geambasu, H., 2015]

[Gupta, Zorrilla Matilla, H., Haiman, 2018]

... and to inform our decisions & actions

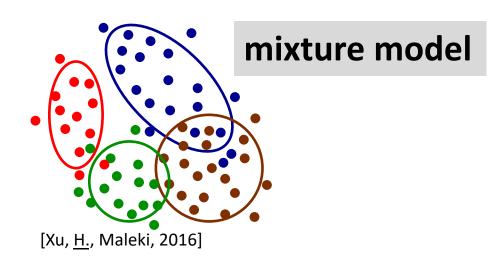
Where do these models come from?

- 1. Collect data (observations of some phenomenon)
- 2. Find a statistical model that fits data
- 3. Test predictions of the model (with more observations)
- 4. Repeat

My research concerns algorithmic & statistical aspects of statistical models

Primary mode of research:

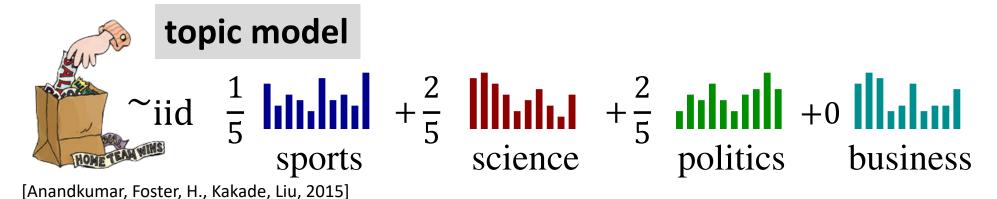
Rigorously analyze (and prove theorems about) algorithms & statistical models


This talk

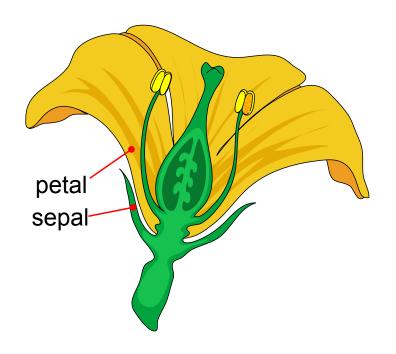
Part 1: Algorithms for fitting statistical models

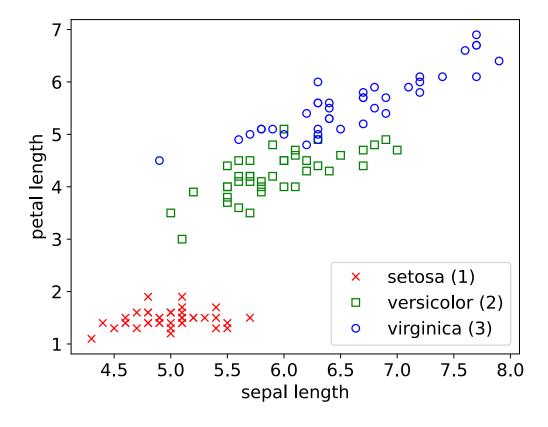
Part 2: Algorithms in large language models

1. Algorithms for fitting statistical models


Many statistical models, many algorithms

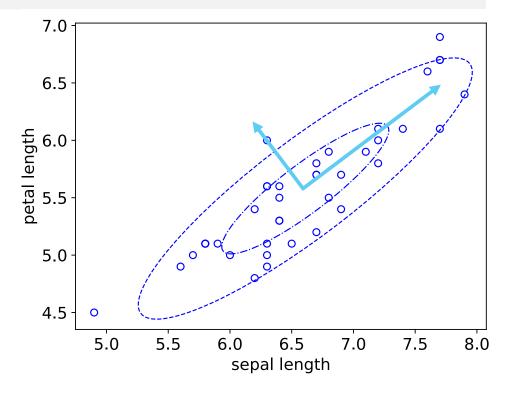
logistic regression



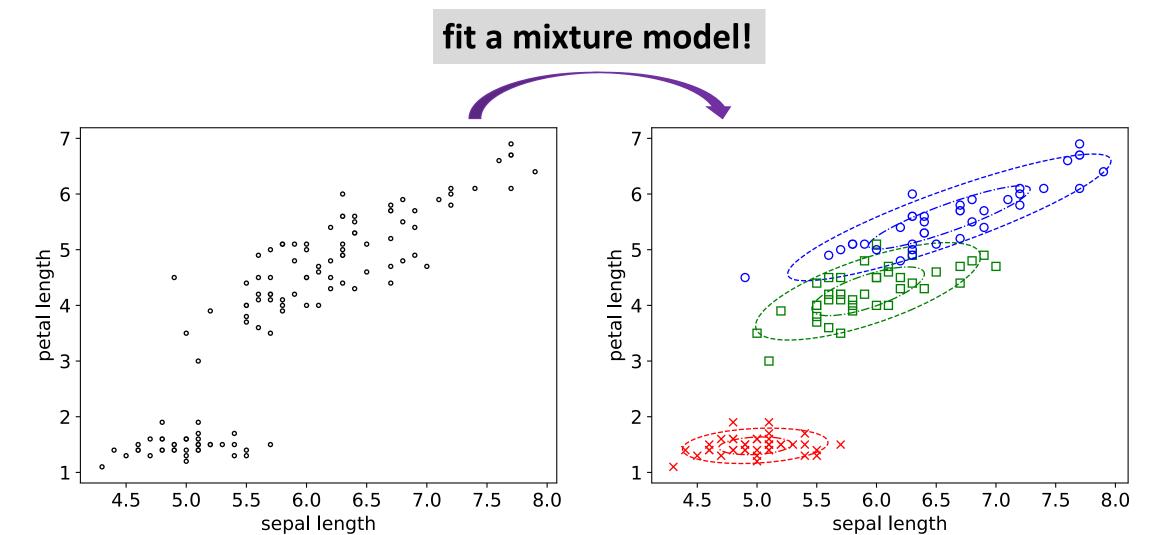

[<u>H.</u> & Mazumdar, 2024]

Example: iris dataset

Anderson's iris dataset (studied by Fisher, 1936)



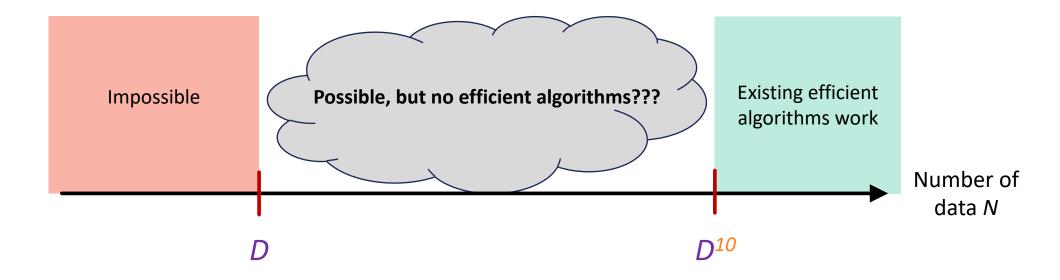
Example: Gaussian model


Probability distribution that considers:

- Average value of attributes (means)
- Dispersion of attributes (variances)
- Association between attributes (covariances)

Use linear algebra to understand structure of pair-wise associations [keywords: "eigenvalues" and "eigenvectors"]

Challenge: discover the sub-populations automatically



Analysis of algorithms for fitting mixture models

- Local search [Dempster, Laird, Rubin, 1977]
 - Works for discovering TWO "simple" sub-populations [Xu, H., Maleki, 2016]
 - May completely fail for THREE or more sub-populations
- Spectral projection [Vempala & Wang, 2002]
 - Look at structure of PAIR-WISE associations in overall population
 - Works only if sub-populations are very distinct
- Higher-order methods [Pearson, 1894; ...; H. & Kakade, 2013; ...]
 - Look at structure of K-WAY associations in overall population ($K \ge 3$)
 - Always works ... if you have enough data!

Puzzling situation with high dimensional data

How many data N are needed to fit mixture models with D attributes?

Many statistical problems (e.g., fitting mixture models) appear to exhibit a "statistical-to-computational gap"

Computational intractability

- Some problems cannot be solved by any algorithm [Turing, 1938]
- For some other problems, only known algo. is ≈ "exhaustive search" (e.g., "3-coloring problem", "sudoku", "circuit analysis")

- Theory of "NP-completeness" explains why: [Cook, 1971; Levin, 1973; Karp, 1972] There's a precise sense in which these hard problems are all "equally hard"
- What about "statistical problems"?

Emerging theory for statistical-to-computational gaps

Theorem [Dudeja & H., 2024]:

For many statistical problems (like fitting mixture models), every algorithm must:

use a lot of <u>DATA</u> or use a lot of <u>TIME</u> or use a lot of <u>MEMORY</u>

And some known existing algorithms are "Pareto-optimal": impossible to improve one of these aspects without worsening another

2. Algorithms in large language models

Language models

- Large Language Models (LLMs) are extremely compelling due to the "naturalness" of their predictions
- Originally studied by Shannon (1948) in his theory of communication

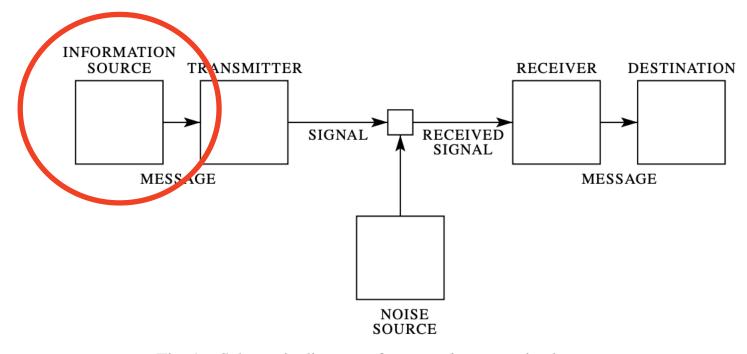


Fig. 1—Schematic diagram of a general communication system.

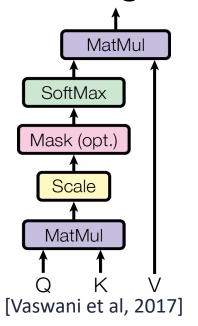
Shannon's N-gram model

- Language model: Given prefix of tokens, give probability of next token
- N-gram model: The probability depends only on last N-1 tokens

$$P(w_T|w_1, \dots, w_{T-1}) = \frac{P(w_{T-N+1}, \dots, w_T)}{P(w_{T-N+1}, \dots, w_{T-1})}$$

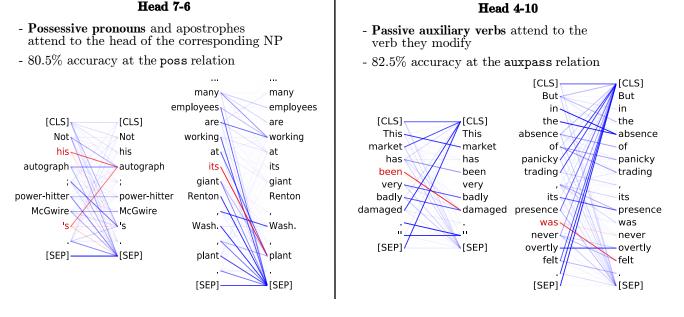
- Can be used to predict most likely next token
- Can also be used to randomly generate likely "completions"

Some sequences generated by an N-gram model

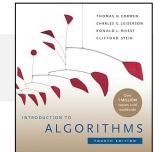

Prefix of tokens provided (a.k.a. the prompt):

it is a truth universally ac

N=1:[...] mci w aeovmsne drsbwt elo oiwetrcao rne em ok hae lom N=2:[...] o drto t bet it s f aree h at teshas rr l hasis popor N=3:[...] es as pred cirse so tiought let of ant forrieng pled N=4:[...] common of could ell his i foung laster are plage omin N=5:[...] quaintance only can better he obliged it is the first


Fitting N-gram models to data

- Lots of methods developed in the 20^{th} century (usually N < 10)
- Today:
 - $N = 10^6$ or more
 - $P(w_T|w_1, ..., w_{T-1})$ computed using a "multi-layer Transformer"
 - Fit to all text on the internet using "Gradient Descent" algorithm



What makes LLMs so amazing?

- Ability to make good next-token predictions seems to involve interesting forms of "reasoning" (= algorithmic process)
- How do we know this? Neuroscience for LLMs [e.g., Clark et al, 2019]
 - Discovered some basic "algorithms" implemented by the LLMs (e.g., for rudimentary linguistic analysis and statistical inference)

What problems can Transformers solve?

- Forget about complex linguistic analysis, etc., ... Can Transformers efficiently solve simple computational problems?
- Example: 2-SUM Given N numbers $x_1, x_2, ..., x_N$, are there 2 of them that add up to 0?
 - Even a "single-layer Transformer" can solve 2-SUM [Sanford, H., Telgarsky, 2023]

- Example: 3-SUM Given N numbers $x_1, x_2, ..., x_N$, are there 3 of them that add up to 0?
 - A "single-layer Transformer" CANNOT solve 3-SUM [Sanford, H., Telgarsky, 2023]
 - What about multi-layer Transformer? We don't know!

Problems that need multi-step reasoning

John plays football. [...]
The NFL game is on Sunday. [...]
On what day does John play?

Contextual knowledge:

John → football NFL → Sunday

Prior knowledge:

football → NFL

Theorem [Sanford, <u>H.</u>, Telgarsky, 2024; Wang, Nichani, Bietti, Damian, <u>H.</u>, Lee, Wu, 2025]: Multi-layer Transformers perform "multi-step reasoning" as well as (and no better than) MapReduce (parallel computation) algorithms

Takeaways

- Statistical models are everywhere and have many applications
- Fitting models to data: both an algorithmic and a statistical problem
- <u>Large language models</u> are also statistical models; understanding how/why they work is a multidisciplinary challenge

Thank you!