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We use statistical models to make sense of the world ...
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[Effland, Lawson, Balter, Devinney, Reddy, Waechter, Gravano, H., 2018]

[Kaﬁdula, H., Shaman, 2017]
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... and to inform our decisions & actions
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Where do these models come from?

1. Collect data (observations of some phenomenon)

2. Find a statistical model that fits data

3. Test predictions of the model (with more observations)

4. Repeat

My research concerns algorithmic & statistical
aspects of statistical models

Primary mode of research:

Rigorously analyze (and prove theorems about)
algorithms & statistical models




This talk

Part 1: Algorithms for fitting statistical models

Part 2: Algorithms in large language models



1. Algorithms for fitting statistical models



Many statistical models, many algorithms

logistic regression

hiotdog) Not hotdog!

[H. & Mazumdar, 2024]

topic model
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[Anandkumar, Foster, H., Kakade, Liu, 2015]




Example: iris dataset

Anderson's iris dataset (studied by Fisher, 1936)
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Example: Gaussian model

Probability distribution that considers: .
* Average value of attributes (means) >
* Dispersion of attributes (variances) %6'0'
* Association between attributes (covariances) ;;;5-5-
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Use linear algebra to understand structure of pair-wise associations

[keywords: "eigenvalues" and "eigenvectors"]




Challenge: discover the sub-populations automatically

fit a mixture model!
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Analysis of algorithms for fitting mixture models

e Local search [Dempster, Laird, Rubin, 1977]
* Works for discovering TWO "simple" sub-populations [xu, H., Maleki, 2016]
* May completely fail for THREE or more sub-populations

e Spectral projection [vempala & Wang, 2002]
* Look at structure of PAIR-WISE associations in overall population
* Works only if sub-populations are very distinct

* Higher-order methods [pearson, 1894; ...; H. & Kakade, 2013; ...]
* Look at structure of associations in overall population ( )
* Always works ... if you have enough datal
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Puzzling situation with high dimensional data

How many data N are needed to fit mixture models with D attributes?

Impossible Possible, but no efficient algorithms??? Existing efficient
algorithms work
I | > Number of
| | data N
D D

Many statistical problems (e.g., fitting mixture models) appear to
exhibit a "statistical-to-computational gap"



Computational intractability

* Some problems cannot be solved by any algorithm [Turing, 1938]
* For some other problems, only known algo. is = "exhaustive search"

(e.g., "3-coloring problem", "sudoku", "circuit analysis")

* Theory of "NP-completeness” explains why: [Cook, 1971; Levin, 1973; Karp, 1972]
There's a precise sense in which these hard problems are all "equally hard"

* What about "statistical problems"?
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Emerging theory for statistical-to-computational gaps

Theorem [Dudeja & H., 2024]:

For many statistical problems (like fitting mixture models),
every algorithm must:

use a lot of DATA or wusealotof TIME or use alotof MEMORY

And some known existing algorithms are "Pareto-optimal":
impossible to improve one of these aspects without worsening another
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2. Algorithms in large language models



Language models

 Large Language Models (LLMs) are extremely compelling due to the
"naturalness" of their predictions

 Originally studied by Shannon (1948) in his theory of communication
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Fig. 1 —Schematic diagram of a general communication system.



Shannon's N-gram model

e Language model: Given prefix of tokens, give probability of next token
* N-gram model: The probability depends only on last N-1 tokens

P(WT—N+1' ) WT)

P(Wr_N+1s - Wr—1)

P(Wy|lwy, o, wr_q) =

e Can be used to predict most likely next token

e Can also be used to randomly generate likely "completions"



Some sequences generated by an N-gram model

Prefix of tokens provided (a.k.a. the prompt):
1t 1s a truth universally ac

N=1:[..]mc1l w aeovmsne drsbwt elo oiwetrcao rne em ok hae lom
N=2:[..]0 drto t bet 1t s f aree h at teshas rr 1 hasis popor
N=3:[..]es as pred cirse so tiought let of ant forrieng pled

N=4:[..] common of could ell his 1 foung laster are plage omin
N=5:[..] quaintance only can better he obliged 1t 1s the first




Fitting N-gram models to data

* Lots of methods developed in the 20t century (usually N < 10)
* Today:
* N =10°0r more
 P(Wy|wy, ..., wr_1) computed using a "multi-layer Transformer"

* Fit to all text on the internet using "Gradient Descent" algorithm
|

MatMul
)
SoftMax
4
Mask (opt.)
4
Scale
)
MatMul

t 1
Q K V
[Vaswani et al, 2017]
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What makes LLMs so amazing?

* Ability to make good next-token predictions seems to involve
interesting forms of "reasoning” (= algorithmic process)

* How do we know this? Neuroscience for LLMs [e.g., Clark et al, 2019]

* Discovered some basic "algorithms" implemented by the LLMs
(e.g., for rudimentary linguistic analysis and statistical inference)

Head 7-6

- Possessive pronouns and apostrophes
attend to the head of the corresponding NP

- 80.5% accuracy at the poss relation
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Head 4-10

- Passive auxiliary verbs attend to the
verb they modify

- 82.5% accuracy at the auxpass relation

[CLS]
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This This absence- J~absence
market market of <, | of
has—___ has panicky | panicky
been been trading -trading
very very ,~ ,
badly badly its its
damaged damaged presence presence
was/ was
never never

[SEP] \[SEP] overtly
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What problems can Transformers solve? \" (q %

oooooooooooo

* Forget about complex linguistic analysis, etc., ... [ ===
Can Transformers efficiently solve simple computational problems?

* Example: 2-SUM
Given N numbers X4, X5, ..., Xy, are there 2 of them that add up to 0?
* Even a "single-layer Transformer" can solve 2-SUM  [Sanford, H., Telgarsky, 2023]

1, 4, 2, 8, -2, 5, -7

* Example:
Given N numbers x4, X5, ..., Xy, are there 3 of them that add up to 0?
* A'single-layer Transformer” CANNOT solve 3-SUM  [Sanford, H., Telgarsky, 2023]
* What about multi-layer Transformer? We don't know!
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Problems that need multi-step reasoning

John plays football. [...]
The NFL game is on Sunday. [...]
On what day does John play?

e Contextual knowledge:
John = football
NFL - Sunday

* Prior knowledge:
football = NFL

Theorem [Sanford, H., Telgarsky, 2024; Wang, Nichani, Bietti, Damian, H., Lee, Wu, 2025].
Multi-layer Transformers perform "multi-step reasoning" as well as
(and no better than) MapReduce (parallel computation) algorithms
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Takeaways

e Statistical models are everywhere and have many applications
* Fitting models to data: both an algorithmic and a statistical problem

e Large language models are also statistical models;
understanding how/why they work is a multidisciplinary challenge

Thank youl!
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