
COMS 6998-4 F17 Homework 1 (due Wednesday October 18)

Daniel Hsu (djh2164)

Instructions

Solve two of the assigned problems.

Submit your write-up on Gradescope as a PDF document by 11:59 PM of the due date. Upon submitting to
Gradescope, make sure each problem has some page of the PDF assigned to it, or we will assume the problem
was not solved.

Make sure the following appears on the first page of your write-up:

• your name,
• your UNI, and
• the names and UNIs of any students with whom you discussed the assignment.

You are welcome to use the Markdown or LaTeX source for the assignment as a template for your write-up. I
use Pandoc http://pandoc.org to translate the Markdown to LATEX and ultimately to PDF.
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Problem 1

Consider the setting for online decision-making with bandit feedback and expert advice, with the following
change (parameterized by a positive integer n that is at most N). In each round, the learner chooses at most
n of the experts, and receives the actions of only the chosen experts; the actions of the experts not chosen are
unobserved. The rest of the round is the same as before: the learner choose an action and then receives the
cost for (only) the chosen action. Assume the costs for all K actions are always in the range [0, 1].

Prove that there is an algorithm for the learner in this setting with expected regret at most

O

(√
min{K,n}N logN

n
· T

)

after T rounds.

Hint: Modify the Exp4 algorithm.

Your solution:
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Problem 2

Let (Xt)t=1,2,... be a sequence of random variables, and (Yt)t=1,2,... a sequence of random functionals such
that, for each t, Yt depends only on X1, . . . , Xt. Define the notation Et[ · ] := E[ · | X1, . . . , Xt−1].

• Part 1. Prove that for any T ≥ 1, λ > 0, and δ ∈ (0, 1),

P

(
T∑
t=1

Yt ≥
1
λ

T∑
t=1

lnEt[exp(λYt)] + 1
λ

ln(1/δ)
)
≤ δ.

Hint: Determine the expectation of the random variable

exp
(
λ

T∑
t=1

Yt −
T∑
t=1

lnEt[exp(λYt)]
)
,

and then apply Markov’s inequality.

• Part 2 (optional). Assume that for all t, we have Yt ≤ 1 and Et[Yt] = 0. Use the inequality from Part 1
to prove that for any δ ∈ (0, 1) and v > 0,

P

(
T∑
t=1

Yt ≥
√

2v ln(1/δ) + ln(1/δ)
3 ∧

T∑
t=1

Et[Y 2
t ] ≤ v

)
≤ δ.

Hint: First prove that for any λ > 0,

1
λ

T∑
t=1

lnEt[exp(λYt)] ≤
eλ − λ− 1

λ

T∑
t=1

Et[Y 2
t ].

Now use the fact that for λ ∈ (0, 3),

eλ − λ− 1
λ

≤ λ

2(1− λ/3) .

(You may use this last inequality without proof.) Conclude the proof by assuming
∑T
t=1 Et[Y 2

t ] ≤ v
and choosing λ ∈ (0, 3) appropriately.

• Part 3. Consider a variant of the Exp4 algorithm for online decision-making with bandit feedback
and expert advice in which all of the probability vectors pt are chosen so that pt(a) ≥ pmin for some
given pmin > 0. (Don’t worry about how this is done.) For each a ∈ [K] and t = 1, . . . , T , assume that
ct(a) ∈ [0, 1] and also that ĉt(a) is the Horvitz-Thompson (inverse probability weighting) estimator of
ct(a). Use either the probability inequality from Part 2 or Theorem 1.6 from David Freedman’s 1975
paper “On Tail Probabilities for Martingales” to prove a bound on

max
i∈[N ]

{(
T∑
t=1

ct(at)− ct(bt,i)
)
−

(
T∑
t=1
〈ĉt, pt〉 − ĉt(bt,i)

)}

that holds with probability at least 1− δ.

Your solution:
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Problem 3

Design an online classification algorithm such that, in the realizable setting where the target concept is a
homogeneous linear threshold function, c = hw∗ for some w∗ ∈ Rd, and the conditions below hold, a learner
using the algorithm makes at most log2d(1 + ‖w∗‖2)de mistakes.

The conditions are:
‖xn‖2 = 1, |〈w∗, xn〉| ≥ 1, n = 1, 2, . . . .

Your solution:
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