McDiarmid’s inequality
COMS 4995-1 Spring 2020 (Daniel Hsu)

Theorem (McDiarmid’s inequality). Let X_1, \ldots, X_n be independent random variables, where X_i has range \mathcal{X}_i. Let $f: \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \to \mathbb{R}$ be any function with the (c_1, \ldots, c_n)-bounded differences property: for every $i = 1, \ldots, n$ and every $(x_1, \ldots, x_n), (x'_1, \ldots, x'_n) \in \mathcal{X}_1 \times \cdots \times \mathcal{X}_n$ that differ only in the i-th coordinate ($x_j = x'_j$ for all $j \neq i$), we have

$$|f(x_1, \ldots, x_n) - f(x'_1, \ldots, x'_n)| \leq c_i.$$

For any $t > 0$,

$$\Pr(f(X_1, \ldots, X_n) - \mathbb{E}[f(X_1, \ldots, X_n)] \geq t) \leq \exp \left(- \frac{2t^2}{\sum_{i=1}^n c_i^2} \right).$$

Proof. Write $\mathbb{E}_i[\cdot]$ to denote expectation conditioned on $X_i^i := (X_1, \ldots, X_i)$. Therefore, $g_i(X_i^i) := \mathbb{E}_i[f(X_1^n)]$ is, as the notation suggests, a function of X_i^i. Now define the following random variables:

$$Y_i := g_i(X_i^i) - g_{i-1}(X_1^{i-1}),$$

$$A_i := \inf_{x_i \in \mathcal{X}_i} g_i(X_1^{i-1}, x_i) - g_{i-1}(X_1^{i-1}),$$

$$B_i := \sup_{x_i \in \mathcal{X}_i} g_i(X_1^{i-1}, x_i) - g_{i-1}(X_1^{i-1}).$$

These random variables satisfy

$$Y_i \in [A_i, B_i],$$

$$\mathbb{E}_{i-1}[Y_i] = 0,$$

$$\sum_{i=1}^n Y_i = f(X_1^n) - \mathbb{E}[f(X_1^n)].$$

Furthermore, we claim that $[A_i, B_i]$ is always an interval of length at most c_i. We defer the proof of this claim to later.
To bound the probability that the sum of the Y_i’s is at least t, we use the Chernoff bounding method. Let $S_i := Y_1 + \cdots + Y_i$. Then

$$
\mathbb{E}[\exp(\lambda S_i)] = \mathbb{E}[\exp(\lambda(Y_n + S_{n-1}))]
= \mathbb{E}[\mathbb{E}_{n-1}[\exp(\lambda Y_n)] \exp(\lambda S_{n-1})]
\leq \exp(\lambda^2 c_n^2/8) \mathbb{E}[\exp(\lambda S_{n-1})]
= \exp(\lambda^2 c_n^2/8) \mathbb{E}[\exp(\lambda(Y_{n-1} + S_{n-2}))]
= \exp(\lambda^2 c_n^2/8) \mathbb{E}[\mathbb{E}_{n-2}[\exp(\lambda Y_{n-1})] \exp(\lambda S_{n-2})]
\leq \exp(\lambda^2 c_n^2/8) \exp(\lambda^2 c_{n-1}^2/8) \mathbb{E}[\exp(\lambda S_{n-2})]
\vdots
\leq \exp(\lambda^2 c_n^2/8) \cdots \exp(\lambda^2 c_1^2/8)
= \exp \left(\sum_{i=1}^{n} c_i^2 / 4 \cdot \frac{\lambda^2}{2} \right).
$$

Above, the inequalities all follow from Hoeffding’s inequality. Therefore, S_n is $\sum_{i=1}^{n} c_i^2 / 4$-subgaussian. The probability bound now follows from the Cramer-Chernoff inequality for subgaussian random variables.

It remains to prove that $[A_i, B_i]$ is an interval of length at most c_i. We show that $B_i - A_i \leq c_i$:

$$
B_i - A_i = \sup_{x_i' \in \mathcal{X}_i} g_i(X_i^{-1}, x_i') - \inf_{x_i \in \mathcal{X}_i} g_i(X_i^{-1}, x_i)
= \sup_{x_i, x_i' \in \mathcal{X}_i} g_i(X_i^{-1}, x_i') - g_i(X_i^{-1}, x_i)
= \sup_{x_i, x_i' \in \mathcal{X}_i} \mathbb{E}_i \left[f(X_i^{-1}, x_i', X_i^n) - f(X_i^{-1}, x_i, X_i^n) \right]
\leq \mathbb{E}_i \left[\sup_{x_i, x_i' \in \mathcal{X}_i} | f(X_i^{-1}, x_i', X_i^n) - f(X_i^{-1}, x_i, X_i^n) | \right]
\leq c_i.
$$

The last step above uses the bounded differences property of f. \hfill \blacksquare