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Abstract: Let V � f0; 1g

n

have Vapnik-Chervonenkis dimension d. Let M(k=n; V )

denote the cardinality of the largest W � V such that any two distinct vectors in W

di�er on at least k indices. We show that M(k=n; V ) � (cn=(k + d))

d

for some constant

c. This improves on the previous best result of ((cn=k) log(n=k))

d

. This new result has

applications in the theory of empirical processes.
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1 Statement of Results

Let n be natural number greater than zero. Let V � f0; 1g

n

. For a sequence of indices

I = (i

1

; . . . ; i

k

), with 1 � i

j

� n, let V

j

I

denote the projection of V onto I, i.e.

V

j

I

= f(v

i

1

; . . . ; v

i

k

) : (v

1

; . . . ; v

n

) 2 V g:

If V

j

I

= f0; 1g

k

then we say that V shatters the index sequence I. The Vapnik-Chervonenkis

dimension of V is the size of the longest index sequence I that is shattered by V [VC71]

(this terminology comes from [HW87]). We will denote this number by d. Hence

d = maxfk : 9 I = (i

1

; . . . ; i

k

); 1 � i

j

� n; withV

j

I

= f0; 1g

k

g:

This quantity plays a important role in certain areas of statistics, in particular in the the-

ory of empirical processes [Dud78,Vap82,GZ84,Dud84,Pol84,Tal87a,Tal87b,Tal88,Pol90].

It has also been used recently in the �elds of computational geometry [HW87] [Wel88]

[MSW90] [EGS88] [CF88] [CW89] andmachine learning [BEHW89,HP88,RHW89,FC90,VW91].

Let jV j denote the cardinality of V . The following result is well known, and was

independently discovered by several people, including Sauer [Sau72] and Vapnik and Cher-

vonenkis (see [Ass83] for a review, and also [Dud84]).

Lemma 1 (Sauer/VC) If the Vapnik-Chervonenkis dimension of V is d, then

jV j �

d

X

i=0

 

n

i

!

� (en=d)

d

;

where e is the base of the natural logarithm.

For vectors ~u;~v 2 f0; 1g

n

, let

�(~u;~v) =

1

n

n

X

i=1

ju

i

� v

i

j:

For any � > 0, a set of vectors W � f0; 1g

n

is �-separated if for all distinct ~u;~v 2 W ,

�(~u;~v) � �: The � packing number for a set V � f0; 1g

n

, denotedM(�; V ), is the cardinality

of the largest �-separated subset W of V . Thus for integer r, M((2r + 1)=n; V ) is the

largest set of disjoint L

1

balls of radius r=n with centers in V , or equivalently, the size of

the largest r-bit error correcting code contained in V . In this paper we demonstrate the

following result.

Theorem 1 If the Vapnik-Chervonenkis dimension of V is d and � = k=n for integer k,

1 � k � n, then

M(�; V ) � e(d + 1)

 

2e(n + 1)

k + 2d+ 2

!

d

� e(d+ 1)

�

2e

�

�

d

:
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This shows that the L

1

sphere packing numbers for arbitrary sets with Vapnik-Chervonenkis

dimension d behave something like L

1

sphere packing numbers for bounded regions of d-

dimensional Euclidean space.

Note that for k = 1 (i.e. � = 1=n), any two distinct vectors in V are �-separated,

thus the �rst bound gives a result similar to the Sauer/VC bound (Lemma 1) in this case,

although not as tight. However, for larger values of �, Theorem 1 improves on the best

previous result, which is

M(�; V ) �

�

c

0

�

log

1

�

�

d

;

where c

0

is some constant, obtained using the method of Dudley [Dud78] (see [Hau91]

for a bound on the constants in Dudley's result). By getting rid of the extra log factor

in Dudley's result, certain key bounds in the theory of empirical processes can also be

improved by a logarithmic factor [Tal91].

It is likely that the constant 2e in our result can be further improved. (It certainly

can be improved for small d by using more precise upper estimates of

P

d

i=0

�

n

i

�

than that

given in Lemma 1.) However, to within some multiplicative constant, the general form of

the �rst bound of Theorem 1 is as tight as possible. This follows from the following lower

bound.

Theorem 2 For every natural numbers d; s � 1 there exists a subset V � f0; 1g

n

, where

n = sd, with Vapnik-Chervonenkis dimension d such that for each k, 1 � k � n,

M(k=n; V ) �

 

n

2e(k + d)

!

d

:

This leaves a gap from 1=2e to 2e for the best universal value of the key constant in the

bound of Theorem 1. Again, it is likely that the lower bound of Theorem 2 can be improved

as well. However, at this time we do not have a good guess as to what the best possible

constant is. This remains an intriguing open problem. It is also open

2

whether similar

results hold for any of the various generalizations of the Vapnik-Chervonenkis dimension

and the Sauer/VC lemma that have been studied (e.g. [Fra83,Dud87,Pol90,Hau91,HL91]).

2 Proofs of the Results

Throughout this section we assume that V � f0; 1g

n

and the Vapnik-Chervonenkis dimen-

sion of V is d. We begin with the following simple lemma from [HLW90].

Let E be the set of all pairs (~u;~v) with ~u;~v 2 V such that �(~u;~v) = 1=n. Thus E is the

set of edges in the subgraph of the Boolean n-cube induced by V (see also [Bon72,AHW87]).

2

This question has been resolved recently for the pseudodimension [Pol90] by Phil Long and Nicol�o Cesa-

Bianchi [CBL91]. They show how Theorem 1 can be extended to get similar bounds on the L

1

sphere packing

numbers for sets of vectors in n dimensional Euclidean space with pseudodimension d.
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Lemma 2 ([HLW90])

jEj=jV j � d:

Although this result is already proved in [HLW90], for completeness we provide an

alternate proof here. This proof was suggested to us by Nati Lineal, and uses the simple

technique of shifting [Fra87,Ste78,Alo83,Tal88] in place of the recursion in [HLW90].

Proof. For each index i, 1 � i � n, and each ~v 2 V , if v

i

= 1 and the vector

~v

0

= (v

1

; . . . ; v

i�1

; 0; v

i+1

; . . . ; v

n

) is not in V , then let S

i;V

(~v) = ~v

0

(here we say that ~v is

shifted to ~v

0

), otherwise let S

i;V

(~v) = ~v. We de�ne the shift of V on index i, denoted S

i

(V ),

by

S

i

(V ) = fS

i;V

(~v) : ~v 2 V g:

Let S

i

(E) denote the set of edges in the subgraph of the n-cube induced by S

i

(V ). We

claim that

1. jS

i

(V )j = jV j,

2. jS

i

(E)j � jEj, and

3. for any index set I, if I is shattered by S

i

(V ) then I is shattered by V . Hence the

Vapnik-Chervonenkis dimension of S

i

(V ) is no more than that of V [Alo83].

The �rst claim is obvious. To verify the second claim, we map the edges of E in a 1-1

manner into the edges of S

i

(E). Assume (~u;~v) 2 E. If neither ~u nor ~v are shifted then

this edge is una�ected by the shift, so map it to itself. If both ~u and ~v are shifted then

this edge is simply mapped to the edge (S

i;V

(~u); S

i;V

(~v)). Finally, let us assume that ~v is

shifted, but ~u is not. In this case ~u and ~v must di�er on some index j 6= i, and we must

have u

i

= v

i

= 1. Since ~u is not shifted, ~u

0

= (u

1

; . . . ; u

i�1

; 0; u

i+1

; . . . ; u

n

) 2 V . It follows

that (~u

0

; S

i;V

(~v)) 2 S

i

(E). Hence we can map (~u;~v) to (~u

0

; S

i;V

(~v)). It is easily veri�ed

that the resulting map is 1-1.

To verify the third claim, suppose that a sequence I of k indices is shattered by S

i

(V ).

If i is not in I, then clearly I is also shattered by V , since V

j

I

= S

i

(V )

j

I

in this case. So

let us assume that i is in I. Without loss of generality, we may assume that i = 1 and

I = (1; . . . ; k). Since I is shattered by S

i

(V ), for every ~u 2 f0; 1g

k

there is a ~v 2 S

i

(V )

with v

j

= u

j

, 1 � j � k. However, if u

1

= 1 then we must have ~v and ~v

0

= (0; v

2

; . . . ; v

n

)

both in V , otherwise ~v would have been shifted, and hence not be in S

i

(V ). This implies

that I is shattered by V , establishing the last claim.

Now beginning with V , simply shift V repeatedly on any sequence of (not necessarily

distinct) indices until no more non-trivial shifts are possible, i.e. until you obtain a set

W such that S

i

(W ) = W for all 1 � i � n. This must happen eventually, since each

non-trivial shift reduces the total number of ones in the vectors of V . Let F be the set

4



of edges of the subgraph of the n-cube induced by W . By the above results, jW j = jV j,

jF j � jEj, and the Vapnik-Chervonenkis dimension of W is at most d.

Let us say that ~u � ~v if u

i

� v

i

for all i, 1 � i � n. We claim that W is closed

downward under the ordering �, in the sense that if ~v 2 W , then ~u 2W for all ~u � ~v. It

is clear that if ~u � ~v 2W and ~u di�ers from ~v on only one index i, then ~u 2W : otherwise

one more non-trivial shift of W would be possible. The claim follows by induction. It

follows from this that if ~v 2 W , then the set of indices i for which v

i

= 1 is shattered

by W . Since the Vapnik-Chervonenkis dimension of W is at most d, this implies that no

vector in W contains more than d ones. Therefore

jV j = jW j �

d

X

i=1

 

n

i

!

(which is the Sauer/VC lemma (Lemma 1)) and

jEj=jV j � jF j=jW j � d:

The last inequality can be veri�ed by noting that a vector in f0; 1g

n

with at most d ones

can have n-cube edges to at most d vectors with fewer ones. 2

Lemma 2 is the key in proving the next result, which is main tool we use in the proof of

Theorem 1. It is closely related to the results obtained in [HKS91]. Let P be a probability

distribution on V . Hence V can now be viewed as a vector-valued random variable. For

each i, 1 � i � n, let V

i

be the ith component of the random variable V . Thus V

1

; . . . ; V

n

are correlated Bernoulli random variables, and the value of V

i

is determined by choosing

~v 2 V at random by the distribution P , and letting V

i

= v

i

. Recall that for any Bernoulli

random variable B, the variance of B is p(1 � p), where p is P (B = 1), and for Bernoulli

random variables B

1

; . . . ; B

m

, the conditional variance of B

m

given B

1

; . . . ; B

m�1

is de�ned

by

Var(B

m

jB

1

; . . . ; B

m�1

) =

X

~v2f0;1g

m�1

P (~v)P (B

m

= 1j~v)(1 � P (B

m

= 1j~v));

where for ~v = (v

1

; . . . ; v

m�1

), P (~v) = P (B

1

= v

1

; . . . ; B

m�1

= v

m�1

) and P (B

m

= 1j~v) =

P (B

m

= 1jB

1

= v

1

; . . . ; B

m�1

= v

m�1

).

Lemma 3 For any probability distribution P on V ,

n

X

i=1

Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

) � d:

Proof. We will show here how an upper bound of 2d can be obtained on the above

quantity, and then indicate how further results from [HLW90] can be used to improve this

bound to d. Let E be the set of edges of the subgraph of the n-cube induced by V , as

above. Let the degree of the vector ~v in the graph (V;E) be the number of edges in E

5



incident on ~v. Since the density jEj=jV j of the graph (V;E) is at most d by Lemma 2, if

vectors are drawn uniformly from V , the average degree of a vector ~v 2 V with respect to

this graph is at most 2d, since each edge gets counted twice when you sum the degrees of

the nodes. As in [HLW90], we can thus direct the edges of this graph so that the outdegree

of ~v (number of edges in E directed away from ~v) is at most 2d as follows. First �nd a

vector ~v 2 V whose degree is at most 2d and direct all the edges incident on ~v away from

~v. Then remove ~v from V and iterate this construction on the subgraph induced by the

remaining vectors in V . At each step we are guaranteed of �nding a ~v with degree at most

2d in the remaining graph because the density bound holds not only for the subgraph of

the n-cube induced by V , but also for the subgraph induced by any subset of V . This is

because any subset of V also has Vapnik-Chervonenkis dimension at most d, and hence

Lemma 2 applies to it as well. When the construction is �nished, it is clear that every edge

has been directed, and no ~v 2 V has outdegree more than 2d in the original graph. For

each vector ~v 2 V let outdeg(~v) denote the outdegree of ~v and for each edge (~u;~v) 2 E, let

tail(~u;~v) denote the vector in the pair ~u;~v that the edge is directed away from. We will

use the directions on the edges in E shortly.

Now let us consider Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

). Partition E into E

1

; . . . ; E

n

by

letting E

i

be the edges that cross the ith dimension of the n-cube, i.e. E

i

= f(~u;~v) 2 E :

u

j

= v

j

; j 6= ig. It is readily veri�ed that

Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

) =

X

(~u;~v)2E

i

(P (~u) + P (~v))

P (~u)

(P (~u) + P (~v))

P (~v)

(P (~u) + P (~v))

=

X

(~u;~v)2E

i

P (~u)P (~v)

(P (~u) + P (~v))

:

Hence

n

X

i=1

Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

) =

X

(~u;~v)2E

P (~u)P (~v)

(P (~u) + P (~v))

:

Now note that for any x; y > 0, xy � (x + y)min(x; y). Hence

n

X

i=1

Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

) �

X

(~u;~v)2E

min(P (~u); P (~v))

�

X

(~u;~v)2E

P (tail(~u;~v))

=

X

~v2V

P (~v)outdeg(~v)

� 2d

X

~v2V

P (~v)

= 2d

6



To improve this upper bound to d, instead of directing the edges of E, we appeal

to Lemma 2.7 of [HLW90], where it is shown that the vectors ~u;~v of each edge (~u;~v) 2

E can be weighted with non-negative weights w

(~u;~v)

(~u) and w

(~u;~v)

(~v), resp., such that

w

(~u;~v)

(~u) + w

(~u;~v)

(~v) = 1 for all (~u;~v) 2 E, and for any vector ~v 2 V

X

~u2V :(~u;~v)2E

w

(~u;~v)

(~v) � d:

For the sake of brevity, the argument needed to establish this is not repeated here. We

then argue that

n

X

i=1

Var(V

i

jV

1

; . . . ; V

i�1

; V

i+1

; . . . ; V

n

) �

X

(~u;~v)2E

min(P (~u); P (~v))

�

X

(~u;~v)2E

w

(~u;~v)

(~u)P (~u) +w

(~u;~v)

(~v)P (~v)

=

X

~v2V

P (~v)

0

@

X

~u2V :(~u;~v)2E

w

(~u;~v)

(~v)

1

A

� d

X

~v2V

P (~v)

= d

2

The �nal lemma we will need in order to prove Theorem 1 is the following.

Lemma 4 Suppose that V is an �-separated subset of f0; 1g

n

. Let P be the uniform dis-

tribution on V . For any integer m, 1 � m � n, �x a sequence I = (i

1

; . . . ; i

m�1

) of

m � 1 distinct indices between 1 and n and draw index i

m

uniformly at random from the

remaining n�m+ 1 indices. Then

E[Var(V

i

m

jV

i

1

; . . . ; V

i

m�1

)] �

�n

2(n�m+ 1)

 

1�

jV

j

I

j

jV j

!

;

where E denotes expectation over the random choice of i

m

.

Proof. Let us consider two vectors in V to be equivalent if they have the same value on

all of the indices i

1

; . . . ; i

m�1

in I. Suppose that this partitions V into jV

j

I

j = M equivalence

classes C

1

; . . . ; C

M

. Let N

j

= jC

j

j and N = jV j. Now let us focus on a single equivalence

class C

j

. Suppose that an additional index i

m

is selected at random from the remaining

n�m+1 indices, and two vectors ~u;~v are selected uniformly at random with replacement

from C

j

. Since C

j

is �-separated, if ~u 6= ~v then they di�er on at least �n of the remaining

n�m+1 indices. Hence the probability that u

i

m

6= v

i

m

is at least �n=(n�m+1) times the

7



probability that ~u 6= ~v, or �n(1� 1=N

j

)=(n�m+ 1). The variance p(1� p) of a Bernoulli

random variable is just half the probability that the value of this random variable di�ers

on two independent trials. Hence

E[Var(V

i

m

j~v 2 C

j

)] �

�n

2(n�m+ 1)

 

1�

1

N

j

!

;

where the expectation is over the random choice of i

m

. For real x, let x

+

= x if x � 0, else

x

+

= 0. From the above we have

E[Var(V

i

m

jV

i

1

; . . . ; V

i

m�1

)] =

M

X

j=1

P (C

j

)E[Var(V

i

m

j~v 2 C

j

)]

�

M

X

j=1

�

N

j

N

�

�n

2(n�m+ 1)

 

1�

1

N

j

!

=

�n

2(n�m+ 1)N

M

X

j=1

(N

j

� 1)

+

�

�n

2(n�m+ 1)N

M

X

j=1

(N

j

� 1)

=

�n

2(n�m+ 1)

�

1�

M

N

�

:

2

We can now complete the proof of Theorem 1. Without loss of generality, let us

assume that V itself is �-separated, and obtain an upper bound on jV j. Let P be the

uniform distribution on V . Recall that k = �n. We can assume that k � 3, since it can be

veri�ed that the upper bound given in the statement of the theorem is greater than the

trivial upper bound from Lemma 1 when k = 1 or k = 2. Let us choose

m =

&

(2d+ 2)(n + 1)

k + 2d+ 2

'

indices i

1

; . . . ; i

m

uniformly at random without replacement

3

from f1; . . . ; ng and look at

 = E

2

4

m

X

j=1

Var(V

i

j

jV

i

1

; . . . ; V

i

j�1

; V

i

j+1

; . . . ; V

i

m

)

3

5

:

We �rst claim that Lemma 3 implies that  � d. This can be veri�ed by projecting V

onto I = (i

1

; . . . ; i

m

) and then de�ning the induced probability distribution P

j

I

on V

j

I

in

3

Since k � 3 and n � d; k, it is easy to see that m � n.

8



the obvious way, i.e. P

j

I

(u

1

; . . . ; u

m

) = Pf~v 2 V : v

i

j

= u

j

; 1 � j � mg. This projection

does not change the conditional variances, hence the result follows.

Next we claim that

 = mE[Var(V

i

m

jV

i

1

; . . . ; V

i

m�1

)]

� m

 

k

2(n�m+ 1)

 

1�

jV

j

fi

1

;...;i

m�1

g

j

jV j

!!

� m

 

k

2(n�m+ 1)

 

1�

(e(m � 1)=d)

d

jV j

!!

:

The �rst equality follows by symmetry (and linearity of expectation), the second from

Lemma 4, and the third from the Sauer/VC lemma (Lemma 1). Now putting these two

claims together, we obtain

d � m

 

k

2(n�m+ 1)

 

1�

(e(m� 1)=d)

d

jV j

!!

or equivalently,

jV j �

(e(m� 1)=d)

d

1�

2d(n�m+1)

km

;

so long as

2d(n �m+ 1)

km

< 1:

Now it is clear that

m� 1 �

(2d+ 2)(n + 1)

k + 2d+ 2

;

so

(e(m�1)=d)

d

�

 

�

e

d

�

(2d+ 2)(n+ 1)

k + 2d+ 2

!

d

=

 

(1 + 1=d)

 

2e(n+ 1)

k + 2d+ 2

!!

d

� e

 

2e(n + 1)

k + 2d+ 2

!

d

:

In addition, it is easily veri�ed that

2d(n�m+ 1)

km

�

2d(n+ 1�

(2d+2)(n+1)

k+2d+2

)

k

�

(2d+2)(n+1)

k+2d+2

�

=

d

d+ 1

:

Hence

1

1�

2d(n�m+1)

km

� d+ 1:

Putting these together, this gives the �nal bound

jV j � e(d+ 1)

 

2e(n+ 1)

k + 2d+ 2

!

d

:

9



The second bound of the theorem follows easily from this one. 2

We close with the proof of Theorem 2.

Let W = f(000:::0); (100:::0); (110:::0); . . . ; (111:::1)g � f0; 1g

s

, and V = W

d

, the set

of all vectors obtained by concatenating d vectors from W . Since n = sd, V � f0; 1g

n

.

It is easy to show that the Vapnik-Chervonenkis dimension of V is d: Say that indices

1 � i; j � n are equivalent if di=se = dj=se. Then a sequence of indices is shattered by V

if and only if it contains at most one index in each of the d equivalence classes. Thus no

set of d+ 1 indices is shattered. Note also that the size of V is (s + 1)

d

> s

d

= (n=d)

d

.

For each ~v 2 V and 1 � j � n, let N(~v; j) be the number of vectors ~u 2 V with

�(~u;~v) = j=n. Let C(d; j) denote the number of ordered sequences of d non-negative

integers that sum to j. We claim that for any ~v 2 V , N(~v; j) � C(d; j)2

d

. This follows

from the fact that there are at most C(d; j) ways to choose the number of indices on which

~u di�ers from ~v in each of the d equivalence classes, and given any number of indices on

which ~u and ~v must disagree in a given equivalence class, there are at most 2 choices for

the values for ~u on the indices in that equivalence class. Hence, using well known identities

(see e.g. [GKP89])

k

X

j=0

N(~v; j) � 2

d

k

X

j=0

C(d; j)

= 2

d

k

X

j=0

 

j + d� 1

j

!

= 2

d

 

k + d

k

!

< 2

d

(e(k + d)=d)

d

= (2e(k + d)=d)

d

:

Now choose any ~v

1

in V , eliminate all vectors in V within �-distance k=n or less of ~v

1

,

then choose ~v

2

from the remaining vectors in V and eliminate all vectors within distance

k=n of ~v

2

, etc., until V is exhausted. Since we begin with more than (n=d)

d

vectors, and

each step eliminates at most (2e(k + d)=d)

d

vectors, this process continues for at least

(n=d)

d

(2e(k + d)=d)

d

=

 

n

2e(k + d)

!

d

steps, and the resulting set ~v

1

, ~v

2

, ... of vectors is clearly k=n-separated by construction.

2
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3 Remarks

As argued in the proof of Theorem 1, the result given in Lemma 3 implies that if i

1

; . . . ; i

m

are selected at randomwithout replacement, then the expectation ofVar(V

i

m

jV

i

1

; . . . ; V

i

m�1

)

is at most d=m. When m >> d, this means that the value of V

i

m

is usually highly pre-

dictable given the values of V

i

1

; . . . ; V

i

m�1

. This is the basis for many of the applications of

the Vapnik-Chervonenkis dimension in machine learning and statistics.

In particular, from a Bayesian perspective, we might imagine that a vector ~v 2 V

is selected at random according to a "prior" distribution P on V and hidden from us,

indices i

1

; . . . ; i

m

are selected uniformly at random without replacement, we are given

v

i

1

; . . . ; v

i

m�1

, and we are asked to predict v

i

m

. Bayes optimal strategy is to compute

the posterior probabilities P (v

i

m

= 1jV

i

1

= v

i

1

; . . . ; V

i

m�1

= v

i

m�1

) and P (v

i

m

= 0jV

i

1

=

v

i

1

; . . . ; V

i

m�1

= v

i

m�1

), and predict according to which of these is larger. The probability

that this prediction is wrong when ~v and i

1

; . . . ; i

m

are chosen randomly as above, i.e. the

Bayes risk, is the expectation of the minimum of the above two posterior probabilities.

Looking into the proof of Lemma 3, it can be seen that this quantity is the same as

1

m

X

(~u;~v)2E

min(P (~u); P (~v)):

Hence, by the last series of inequalities in the proof of Lemma 3, the Bayes risk for this

prediction problem is at most d=m for any prior P , as was shown in [HKS91]. As pointed

out there and in [HLW90], in fact the weighting scheme in [HLW90] gives the stronger

result that there exists a (non-Bayesian) prediction strategy such that if i

1

; . . . ; i

m

are

chosen randomly without replacement, then given only the values v

i

1

; . . . ; v

i

m�1

, the value

v

i

m

can be predicted such that for all ~v 2 V , the probability of a mistake is at most d=m,

i.e. the minimax risk of this prediction problem is at most d=m.
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