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1 VC dimension

Let F be a collection of {−1, 1}-valued (or {0, 1}-valued) functions on a domain X . We say a set
of points in X is shattered by F if all possible labelings of these points are realized by functions
from F . The Vapnik-Chervonenkis (VC) dimension of F is the size of the largest set shattered by
F if such a largest set exists; it is ∞ if sets of arbitrarily large size can be shattered by F .

Example: linear threshold functions. Let LTFd = {x 7→ sign(⟨x,w⟩ + b) : w ∈ Rd, b ∈ R}
denote the set of linear threshold functions on X = Rd. We claim that the VC dimension of LTFd
is d+ 1.

To show the VC dimension of LTFd is at least d+ 1, we need to exhibit d+ 1 points shattered
by LTFd. A choice that works is

0, e1, . . . , ed,

where ei is the i-th standard basis vector in Rd. Consider any labeling of these points (y0, y1, . . . , yd) ∈
{−1, 1}d+1. To realize this labeling, we consider the LTF x 7→ sign(⟨x,w⟩ + b) where b = y0 and
w = 2(y1e1 + · · ·+ yded). Then

sign(⟨0, w⟩+ b) = sign(y0) = y0,

sign(⟨ei, w⟩+ b) = sign(2yi + y0) = sign(yi + y0/2) = yi for each i = 1, . . . , d.

To show VC dimension is at most d + 1, we need to show that no d + 2 points are shattered by
LTFd. It is a bit easier to think about this in terms of the homogeneous linear threshold functions
HLTFd+1 = {x 7→ sign(⟨x,w⟩) : w ∈ Rd+1} on Rd+1. Let us associate every x ∈ Rd with its “lifted”
counterpart (x, 1) ∈ Rd+1. The following is easy to show.

Lemma 1. If some points in Rd are shattered by LTFd, then the corresponding lifted points in Rd+1

are shattered by HLTFd+1.

Consider any d + 2 points in Rd, and consider the lifted points x1, . . . , xd+2 ∈ Rd+1. These
points are linearly dependent, so we can write one of them—say, xd+2—as a linear combination
of the others: xd+2 = c1x1 + · · · + cd+1xd+1. Consider the labeling (sign(c1), . . . , sign(cd+1),−1).
Suppose the HLTF x 7→ sign(⟨x,w⟩) realizes the first d+ 1 labels: sign(⟨xi, w⟩) = sign(ci). Then

⟨xd+2, w⟩ = c1⟨x1, w⟩+ · · ·+ cd+1⟨xd+1, w⟩ ≥ 0,

so sign(⟨xd+2, w⟩) = 1. So it cannot realize the last label. So the lifted points are not shattered by
HLTFd+1, which (by Lemma 1) implies the original points are not shattered by LTFd.
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2 Sauer’s lemma

Lemma 2 (Sauer’s lemma). If F has VC dimension d < ∞, then a set of n points can be labeled
by F in at most

(
n
≤d

)
:=

(
n
0

)
+ · · ·+

(
n
d

)
ways.

Sauer’s lemma follows from Proposition 1 below. Say a matrix A ∈ {0, 1}m×n has Property Pn,d

if every submatrix formed by k ≥ d+ 1 of its columns has fewer than 2k distinct rows.

Proposition 1. For any n ≥ 1 and d ≥ 0, if A ∈ {0, 1}m×n has Property Pn,d, then A has at most(
n
≤d

)
distinct rows.

Proof. By induction on n and d. The following base cases are easily verified.

• n = 1 and d = 0: a matrix with P1,0 has at most 1 =
(
1
0

)
distinct row.

• n = 1 and d = 1: a matrix with P1,1 has at most 2 =
(
1
0

)
+
(
1
1

)
distinct rows.

Now we prove the inductive step. Pick any n ≥ 2 and d ≥ 1. Assume, as the (strong) inductive
hypothesis, that for any (n′, d′) with n′ ≤ n, d′ ≤ d, and n′ + d′ < n+ d, if a matrix has Property

Pn′,d′ , then it has at most
(
n′

≤d′

)
distinct rows.

Consider a matrix A with Property Pn,d. We use the distinct rows of A to construct two new
matrices B and C.

• Let B be the distinct rows of A after removing the n-th column.

• When removing the last column of A, some pairs of distinct rows of A got “collapsed” into the
same row of B. For each such pair, put one of the rows in C (but without the n-th column).

Here is an example (with n = 4 and d = 2).

A

0 0 0 0

0 0 0 1

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 1

B

0 0 0

0 0 1

0 1 0

0 1 1

C

0 0 0

0 1 0

By construction, the number of distinct rows of A is equal to the number of (distinct) rows of
B plus the number of (distinct) rows of C. We make two important observations:

• Matrix B has Property Pn−1,d. This is because it is obtained from A by removing the last
column, and removing a column can only reduce the number of distinct rows.

• Matrix C has Property Pn−1,d−1. This is because if there was a submatrix of C formed by d
columns with 2d distinct rows, then we could find a submatrix of A formed by d+1 columns
(one of which is the n-th column) with 2d+1 distinct rows, violating Property Pn,d.

Therefore, invoking the inductive hypothesis, the number of distinct rows of A is at most(
n− 1

≤ d

)
+

(
n− 1

≤ d− 1

)
= 1 +

d∑
k=1

(
n− 1

k

)
+

(
n− 1

k − 1

)
= 1 +

d∑
k=1

(
n

k

)
=

(
n

≤ d

)
.
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Proof of Sauer’s lemma. Take any n points, and consider the possible ways to label them by func-
tions in F : this yields a collection of vectors from {0, 1}n. Organize these vectors as rows in a
matrix with n columns; we want to bound the number of distinct rows. Since F has VC dimension
d < ∞, this matrix has Property Pn,d, so Sauer’s lemma follows from Proposition 1.

3 Lower bound in terms of VC dimension

Proposition 2. Suppose H ⊂ {0, 1}X has VC dimension d < ∞. Every PAC learner for H requires
a sample size of at least Ω(d/ϵ) to guarantee error rate ≤ ϵ with probability at least 3/4.

Proof. Let x1, . . . , xd be d points shattered by H, so all possible labelings of these points can be
realized by hypotheses from H. Let Y1, . . . , Yd be labels for x1, . . . , xd drawn uniformly at random
from {−1, 1}d (which corresponds to a random choice of the target hypothesis from H). Let µ be
the probability distribution with mass 4ϵ/(d − 1) on each of x1, . . . , xd−1, and mass 1 − 4ϵ on xd.
Suppose S is n points drawn iid from µ, with

n ≤ d− 1

16ϵ
.

Let N be the number of points among x1, . . . , xd−1 that appear in S. Then

E[N ] = (d− 1)

(
1−

(
1− 4ϵ

d− 1

)n)
≤ 4ϵn,

so by Markov’s inequality,

Pr(N ≥ 8ϵn) ≤ 1

2
.

So, with probability at least 1/2, (the labels of) more than half of the points x1, . . . , xd−1 are not
seen by the learner. Without loss of generality, let’s say it is Y1, . . . , Ym (with m > (d− 1)/2) that
are not seen by the learner. If H is the hypothesis returned by the learner, then H is independent
of Y1, . . . , Ym. Let

W = |{i ∈ [m] : H(xi) ̸= Yi}|

be the number of mistakes committed byH on thesem points. ThenW follows the Binomial(m, 1/2)
distribution, which has m/2 as a median, so

Pr
(
W ≥ m

2

)
≥ 1

2
.

So with probability at least 1/2× 1/2 = 1/4 (over both the choice of the target hypothesis and the
labeled data provided to the learner), the hypothesis returned by the learner has error rate at least

4ϵ

d− 1
· m
2

> ϵ.

Therefore, there exists a target function h∗ ∈ H such that, with probability at least 1/4, the learner
returns a hypothesis with error rate > ϵ.
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