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1 Uniform convergence

Let µ be a probability distribution on X , and let X1, . . . , Xn be an iid sample from µ. For a function
class F ⊂ {−1, 1}X and probability distribution µ on X , we are interested in

sup
f∈F

µnf − µf (1)

or
sup
f∈F

|µnf − µf |, (2)

where we use µf as shorthand for EX∼µ[f(X)] and µnf as shorthand for 1
n

∑n
i=1 f(Xi). Here, µn

is the empirical distribution based on the iid sample from µ of size n.
Note that (2) is the same as (1) if F is “closed under negation”, i.e., −f ∈ F iff f ∈ F . For

technical reasons, it is sometimes easier to handle (1) instead of (2).
Suppose F has VC dimension d < ∞. Then, by Sauer’s lemma, F only has

(
n
≤d

)
many different

“behaviors” on n points. So we hope to be able to replace the supremum in (1) by a maximum over
the different “behaviors”. If this were the case, we could use Hoeffding’s inequality and a union
bound to bound the probability that (1) is larger than ϵ > 0 by(

n

≤ d

)
exp
(
−Ω(nϵ2)

)
.

Since
(
n
≤d

)
= O(nd), this probability bound would be at most δ for

ϵ = O

(√
d log n+ log(1/δ)

n

)
. (3)

This is essentially what we will be able to prove.
The supremum in (1) considers differences between empirical averages and population means.

It is true that the empirical average can take only O(nd) different values as we range over f ∈ F ,
but it is possible that the population mean µf will take infinitely-many different values. This is
a technical obstacle to analyzing (1) directly. Instead, we will use two “symmetrization” tricks to
bypass this obstacle, before concluding with a concentration argument. Here is the three-step plan:

1. Symmetrization by ghost sample

2. Symmetrization by random signs

3. Conditioning and concentration

1



1.1 Symmetrization by ghost sample

The first trick is to instead analyze a variant of (1), where µf is replaced by an empirical average
over an independent iid sample X ′

1, . . . , X
′
n from µ, called the ghost sample:

sup
f∈F

µnf − µ′
nf (4)

(where we use µ′
nf as shorthand for 1

n

∑n
i=1 f(X

′
i)). The high-level idea is that if two iid random

variables are far from each other, then at least one of them must be far from their common mean.
Differences of empirical averages are entirely determined by effective behaviors of F on finite sets.

Here is a simple way to use this symmetrization trick. For any ϵ1, ϵ2 > 0, define the following
notations for events:

• E [f ] = {µnf − µf ≥ ϵ1 + ϵ2};

• G[f ] = {µ′
nf − µf ≥ ϵ1};

• S[f ] = {µnf − µ′
nf ≥ ϵ2};

• S∗ = {supf∈F µnf − µ′
nf ≥ ϵ2}.

Observe that E [f ] ⇒ G[f ] ∨ S[f ], and S[f ] ⇒ S∗ for any f ∈ F , even if f depends on the sample.
Let fn ∈ argmaxf∈F µnf − µf , breaking ties in some arbitrary but fixed manner. Then

Pr(E [fn]) ≤ Pr(G[fn] ∨ S[fn]) (since E [fn] ⇒ G[fn] ∨ S[fn])
≤ Pr(G[fn]) + Pr(S[fn]) (union bound)

≤ sup
f∈F

Pr(G[f ]) + Pr(S[fn]) (since fn ⊥⊥ µ′
n)

≤ sup
f∈F

Pr(G[f ]) + Pr(S∗) (since S[fn] ⇒ S∗).

We can bound Pr(G[f ]) using Hoeffding’s inequality, but we should choose ϵ1 in a way so that
Pr(G[f ]) is dominated by Pr(S∗).1 After this is done, the main task is to bound Pr(S∗).

1.2 Symmetrization by random signs

We defined (4) by considering two independent iid samples X1, . . . , Xn and X ′
1, . . . , X

′
n from µ. But

we can equivalently arrive at the same stochastic process by starting from a single iid sample from
µ of size 2n, and then partitioning it into two samples, each of size n. One way to do this is to pair
up the 2n points arbitrarily—say, (Xa

1 , X
b
1 ), . . . , (X

a
n, X

b
n)—and then for each pair (Xa

i , X
b
i ), put

one in the first sample and the other in the second sample. We record our choices using a collection
of signs σ1, . . . , σn ∈ {−1,+1}:

• if σi = +1, then we put Xa
i in the first sample and Xb

i in the second sample;

• if σi = −1, then we put Xa
i in the second sample and Xb

i in the first sample.

1A different argument shows that Pr(E [fn]) ≤ Pr(S∗)/(1− supf∈F Pr(G[f ])). In this case, it suffices to choose ϵ1
so that Pr(G[f ]) ≤ 1/2 (say) for all f ∈ F .
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With a particular choice σ1, . . . , σn, we have

µnf − µ′
nf =

1

n

n∑
i=1

σi

(
f(Xa

i )− f(Xb
i )
)
.

This works for any choice of σ1, . . . , σn, and hence it also works for a random choice.
So let us regard σ1, . . . , σn as random variables—in fact, iid random variables with Pr(σi =

+1) = Pr(σi = −1) = 1/2. We call such random variables Rademacher random variables. Then,
again with Xa

1 , X
b
1 , . . . , X

a
n, X

b
n being an iid sample from µ of size 2n, (4) has the same distribution

as

sup
f∈F

1

n

n∑
i=1

σi

(
f(Xa

i )− f(Xb
i )
)
.

We are already in position to move on to the final step, but there is one more simplification we
can make. Note that

sup
f∈F

1

n

n∑
i=1

σi

(
f(Xa

i )− f(Xb
i )
)
= sup

f∈F

1

n

n∑
i=1

σif(X
a
i ) +

1

n

n∑
i=1

(−σi)f(X
b
i ),

≤ sup
f∈F

1

n

n∑
i=1

σif(X
a
i ) + sup

f∈F

1

n

n∑
i=1

(−σi)f(X
b
i ).

Therefore, if the supremum on the left-hand side is at least ϵ > 0, then at least one of the two
suprema on the right-hand side must be at least ϵ/2. Hence,

Pr

(
sup
f∈F

1

n

n∑
i=1

σi

(
f(Xa

i )− f(Xb
i )
)
≥ ϵ

)

≤ Pr

(
sup
f∈F

1

n

n∑
i=1

σif(X
a
i ) ≥ ϵ/2

)
+ Pr

(
sup
f∈F

1

n

n∑
i=1

(−σi)f(X
b
i ) ≥ ϵ/2

)

= 2Pr

(
sup
f∈F

1

n

n∑
i=1

σif(Xi) ≥ ϵ/2

)
,

where the inequality follows from a union bound, and the last step uses the symmetry of the
Rademacher random variables. (We have also gone back to expressing the events in terms of the
original sample X1, . . . , Xn.)

1.3 Conditioning and concentration

Define the empirical inner product of two n-vectors u = (u1, . . . , un) and v = (v1, . . . , vn) by

⟨u, v⟩n =
1

n

n∑
i=1

uivi.

Also define the empirical norm of an n-vector v = (v1, . . . , vn) by ∥v∥n =
√

⟨v, v⟩n.
The previous step left us with analyzing the random variable

sup
v∈F(X1:n)

⟨σ, v⟩n
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where σ = (σ1, . . . , σn) is a Rademacher random vector (i.e., vector of Rademacher random vari-
ables), and F(X1:n) = {f(X1), . . . , f(Xn) : f ∈ F} is the set of behaviors of F on the sample
X1, . . . , Xn. For any fixed v ∈ Rn, we call ⟨σ, v⟩n a Rademacher average, so we have a supremum
of Rademacher averages for the set of (random) vectors F(X1:n).

The final (simple) trick is to condition on the sample X1:n, and then to apply a concentration
inequality for the supremum of Rademacher averages. Upon conditioning on X1:n, the effective
behaviors F(X1:n) becomes a deterministic set of vectors. In general, it could be a set of cardinality
2n; but if F has VC dimension d < ∞, then it has cardinality at most O(nd) by Sauer’s lemma.

Since σ1, . . . , σn are iid mean-zero 1-subgaussian random variables, we have for any v ∈ Rn and
λ ∈ R,

E exp(λ⟨σ, v⟩n) = E exp

(
λ

n

n∑
i=1

σivi

)
≤

n∏
i=1

E exp

(
λσivi
n

)
≤

n∏
i=1

exp

(
λ2v2i
2n2

)
= exp

(
λ2∥v∥2n
2n

)
,

which implies ⟨σ, v⟩n is a mean-zero 1
n∥v∥

2
n-subgaussian random variable. So for any finite set of

vectors V ⊂ Rn and any ϵ > 0,

Pr

(
max
v∈V

⟨σ, v⟩n ≥ ϵ

)
≤
∑
v∈V

exp

(
− nϵ2

2∥v∥2n

)
.

Since the range of each f ∈ F is {−1, 1}, we have ∥v∥n = 1 for all v ∈ F(X1:n). So, when F has
VC dimension d < ∞, we have

Pr

(
sup

v∈F(X1:n)
⟨σ, v⟩n ≥ ϵ | X1:n

)
≤
(

n

≤ d

)
exp

(
−nϵ2

2

)
.

1.4 Putting it all together

Theorem 1. Let F ⊂ {−1, 1}X have VC dimension d < ∞. Let µ be a probability distribution on
X , and let µn be the empirical distribution based on an iid sample from µ of size n. Then for any
ϵ > 0,

Pr

(
sup
f∈F

µnf − µf ≥ ϵ

)
≤ exp

(
−nϵ2

8

)
+ 2

(
n

≤ d

)
exp

(
−nϵ2

32

)
.

This implies that, for any δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

µnf − µf ≤ O

(√
d log n+ log(1/δ)

n

)
.

This is proved by combining the previous steps with appropriate choices for ϵ, ϵ1, ϵ2, etc.

2 Statistical learning via empirical risk minimization

Theorem 1 can be used in the analysis of empirical risk minimization (ERM) for statistical learning.
In statistical learning (for binary classification), µ is a probability distribution on X×{−1, 1}, where
X is the input space and {−1, 1} is the output space. The learner is provided training data, i.e.,
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an iid sample (X1, Y1), . . . , (Xn, Yn) from µ, and the goal is to output a hypothesis h : X → {−1, 1}
that has low error rate

err(h) = µ({(x, y) ∈ X × {−1, 1} : h(x) ̸= y}).

Given a hypothesis class H ⊆ {−1, 1}X , ERM selects a hypothesis hn ∈ argminh∈H errn(h) that
minimizes the empirical error rate

errn(h) = µn({(x, y) ∈ X × {−1, 1} : h(x) ̸= y}) = 1

n

n∑
i=1

1{h(Xi) ̸= Yi},

where µn is the empirical distribution on the training data.
Let h∗ ∈ argminh∈H err(h) be a hypothesis in H of minimum error rate. The relevance of

uniform convergence to the analysis of ERM comes from the following decomposition:

err(hn)− err(h∗) = err(hn)− errn(hn) + errn(hn)− errn(h
∗) + errn(h

∗)− err(h∗)

≤ err(hn)− errn(hn) + errn(h
∗)− err(h∗)

≤ sup
h∈H

err(h)− errn(h)︸ ︷︷ ︸
A

+errn(h
∗)− err(h∗)︸ ︷︷ ︸

B

since errn(hn) ≤ err(h) for all h ∈ H. The probability that term marked B is large can be bounded
using Hoeffding’s inequality: for any ϵ > 0,

Pr(errn(h
∗)− err(h∗) ≥ ϵ) ≤ exp

(
−2nϵ2

)
.

Moreover, the term marked A can be written as

sup
h∈H

err(h)− errn(h) =
1

2

(
sup
f∈FH

µnf − µf

)
where

FH = {fh : h ∈ H} and fh(x, y) = y h(x).

We can apply Theorem 1 to bound the probability that this supremum is large, provided that FH

has finite VC dimension. Consider any set of n points z1, . . . , zn ∈ X × {−1, 1} with zi = (xi, yi)
for each i. Then it is easy to see that FH(z1:n) is in one-to-one correspondence with H(x1:n). This
implies that FH has the same VC dimension as H. So, by Theorem 1, for any ϵ > 0,

Pr

(
sup
h∈H

err(h)− errn(h) ≥ 2ϵ

)
≤ exp

(
−nϵ2

8

)
+ 2

(
n

≤ d

)
exp

(
−nϵ2

32

)
.

where d is the VC dimension of H. Putting everything together, we obtain the following.

Theorem 2. Let H ⊂ {−1, 1}X have VC dimension d < ∞. Let µ be a probability distribution on
X × {−1, 1}, and let hn be the ERM from H based on an iid sample from µ of size n. Then for
any ε, δ ∈ (0, 1), if

n ≥ O

(
d log(1/ε) + log(1/δ)

ε2

)
,

then with probability at least 1− δ,

err(hn)− inf
h∈H

err(h) ≤ ε.

5


	Uniform convergence
	Symmetrization by ghost sample
	Symmetrization by random signs
	Conditioning and concentration
	Putting it all together

	Statistical learning via empirical risk minimization

