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1 Empirical risk minimization for linear threshold functions

Recall the hypothesis class LTFd = {hw,b : w ∈ Rd, b ∈ R} of linear threshold functions hw,b : Rd →
{−1, 1} on Rd, where

hw,b(x) = sign(⟨x,w⟩+ b).

Finding a linear separator for a linearly separable dataset can be formulated as a (polynomial-size)
linear program. This implies that there is a polynomial-time algorithm for PAC learning LTFd.
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However, if the training dataset is not linearly separable, then it is not immediately obvious how
to find a good linear separator. It turns out that finding a linear threshold function that minimizes
the number of misclassified examples (i.e., ERM for LTFd) is NP-hard (Johnson and Preparata,
1978).2

We prove the hardness of the corresponding decision problem: given a dataset S ⊂ {0, 1}d ×
{−1, 1} and an integer k, is there a linear threshold function that misclassifies at most k examples
in S? To show the hardness of this problem, we give an efficient reduction from the Vertex Cover
problem, which is well-known to be NP-complete (Karp, 1972). The Vertex Cover problem is as
follows: given an undirected graph G = (V,E) and an integer k, is there a vertex cover U ⊆ V of
cardinality at most k? A vertex cover for a graph is a subset of the vertices that contains, for every
edge {u, v} in the graph, at least one of u and v.

Let G = (V,E) and k be an instance of the Vertex Cover problem. Denote the vertices by
V = {1, 2, . . . , n}, and let m be the number of edges. We construct a dataset S ⊂ {0, 1}d×{−1, 1}
with d = 2n and |S| = n + 2m based on the graph G. Let e1, . . . , e2n be the standard coordinate
basis vectors for R2n. For any distinct i, j ∈ [2n], define the vector xi,j := ei + ej ∈ R2n. We
construct the dataset S as follows:

• For each i ∈ V , add the labeled example (xi,n+i,+1) to S. These are the positive examples,
one per vertex.

• For each edge {i, j} ∈ E, add the labeled examples (xi,j ,−1) and (xn+i,n+j ,−1) to S. These
are the negative examples, two per edge.

We show the following:

There is a linear threshold function hw,b that misclassifies at most k examples in S.

⇔ There is a vertex cover for G of cardinality at most k.
1One can view boosting as an algorithm for PAC learning LTFd under the additional “margin” assumption (which

is equivalent to the weak learning assumption).
2In fact, it is hard to even solve this problem approximately (Guruswami and Raghavendra, 2009).
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(⇒) Suppose there is a linear threshold function hw,b that misclassifies at most k examples in S.
Let U ⊆ V be defined as follows:

• For each vertex i ∈ V , if hw,b(xi,n+i) = −1 (a mistake), then add i to U .

• For each edge {i, j} ∈ E, if hw,b(xi,j) = +1 (a mistake) or hw,b(xn+i,n+j) = +1 (also a
mistake), then add exactly one of i and j to U .

Since hw,b misclassifies at most k examples in S, this set U has cardinality at most k. We claim
that U is a vertex cover for G. Consider any edge {i, j} ∈ E. If hw,b misclassifies xi,n+i or xj,n+j ,
then i ∈ U or j ∈ U . Now instead suppose hw,b correctly classifies both xi,n+i and xj,n+j . Writing
w = (w1, . . . , w2n), we must have

wi + wn+i + b ≥ 0

and wj + wn+j + b ≥ 0,

which implies
(wi + wj + b) + (wn+i + wn+j + b) ≥ 0.

This means that at least one of xi,j and xn+i,n+j is misclassified, so we include one of i and j in U .
We conclude that U is a vertex cover for G.

(⇐) Now instead suppose G has a vertex cover U of cardinality at most k. Define the linear
threshold function hw,b as follows:

• Set b := −1.

• For each i ∈ V , set

wi := wn+i :=

{
−1 if i ∈ U,

+1 if i /∈ U.

We claim that hw,b misclassifies at most k examples. Consider any edge {i, j} ∈ E and the
corresponding negative examples xi,j and xn+i,n+j . Then ⟨xi,j , w⟩ = wi +wj ≤ 0 since at least one
of i and j is in U . Therefore hw,b(xi,j) = −1. Similarly, hw,b(xn+i,n+j) = −1. So hw,b correctly
classfies all negative examples. Now consider any i ∈ V and the corresponding positive example
xi,n+i. Then ⟨xi,n+i, w⟩ = wi +wn+i < 1 iff i ∈ U . So hw,b(xi,n+i) = −1 iff i ∈ U . Since |U | ≤ k, it
follows that hw,b misclassifies at most k (positive) examples.

Coping with intractability. Similar forms of computational intractability hold for many other
hypothesis classes. What can we do about this? Here are some possibilities (which may not be
mutually exclusive nor individually sufficient):

• Make additional assumptions about the data distribution and/or the training data. Example:
realizability.

• Use a different (and, typically, larger) hypothesis class H′. Example: learn 3-term DNFs
using the larger class of 3-CNFs.

• Use a different loss function that is easier to optimize. Example: exponential loss (as used in
boosting).

• Change the learning model. Example: assume query access to target function.
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2 Surrogate losses

Let (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1} be a dataset of labeled examples.3 The training error rate
of sign ◦g for g : X → R can be written as

R̂isk(g) :=
1

n

n∑
i=1

ℓ0/1(yig(xi)),

where ℓ0/1(z) = 1{z ≤ 0} is the zero-one loss function. If X = Rd and we consider affine functions

g (which have the form g(x) = ⟨x,w⟩+ b for some w ∈ Rd and b ∈ R), then minimizing R̂isk(g) is
the NP-hard problem from the previous section.

However, sometimes we can replace ℓ0/1 with a different function that makes the optimization
problem easier. For example, suppose ℓ0/1(z) is replaced by ϕ(z) = |1− z| (absolute error). Then
the objective becomes an empirical average of absolute errors

R̂iskabs(g) =
1

n

n∑
i=1

|1− yig(xi)| =
1

n

n∑
i=1

|yi − g(xi)|.

If we restrict attention to affine functions g, the minimizing this objective can be formulated as a
linear program and approximately solved in polynomial-time. The key is that ϕ(z) = |1 − z| is a
convex function of z. Many other convex losses appear in the literature:

• ϕ(z) = (1− z)2 (squared error, used in linear regression);

• ϕ(z) = max{0, 1− z} (hinge loss, used in soft-margin support vector machines);

• ϕ(z) = exp(−z) (exponential loss, used in boosting);

• ϕ(z) = log(1 + exp(−z)) (logistic loss, used in logistic regression).

These losses are called convex surrogate losses. Again, restricting attention to affine functions g,
the minimization of the corresponding empirical risk with any of these loss functions is a con-
vex optimization problem, which can be approximately solved using the Ellipsoid algorithm in
polynomial-time. (In fact, it is also often sufficient to use simple algorithms like gradient descent!)

Using the theory of uniform convergence, we can relate R̂iskabs(g) to the mean absolute error4

Riskabs(g) := E[|1− Y g(X)|]

when the training data is an iid sample from the distribution of (X,Y ). This typically requires
restricting the class G from which g is chosen and/or making assumptions on the data distribution.

Proposition 1. Let (X,Y ) be a random example taking values in Rd × {−1, 1}. Let G = {x 7→
⟨x,w⟩ : w ∈ Rd, ∥w∥2 ≤ 1}, and assume E[∥X∥22] < ∞. Let (X1, Y1), . . . , (Xn, Yn) be an iid sample
from the distribution of (X,Y ). Then

E

[
sup
g∈G

Riskabs(g)− R̂iskabs(g)

]
≤ 2

√
E
[
∥X∥22

]
n

.

3In this and subsequent sections, it is important that we use {−1, 1} as the label space instead of {0, 1}, because
we will treat these labels as real numbers.

4For other surrogate losses ϕ, we generally call Riskϕ(g) := E[ϕ(Y g(X))] the surrogate risk (or ϕ-risk) of g.
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Proof. Let Zi := (Xi, Yi) for all i ∈ [n]. We just need to compute the Rademacher complexity of
the function class F := {(x, y) 7→ |1− yg(x)| : g ∈ G}. Since the function t 7→ |1− yt| is 1-Lipschitz
(for any y ∈ {−1, 1}), it follows by the Lipschitz contraction property of Rademacher averages that
Radn(F(Z1:n)) ≤ Radn(G(X1:n)). Moreover,

Radn(G(X1:n)) = Eσ

[
sup

w∈Rd:∥w∥2≤1

1

n

n∑
i=1

σi⟨Xi, w⟩

]
= Eσ

[∥∥∥∥∥ 1n
n∑

i=1

σiXi

∥∥∥∥∥
2

]
.

Therefore

ERadn(F(Z1:n)) ≤ EEσ

[∥∥∥∥∥ 1n
n∑

i=1

σiXi

∥∥∥∥∥
2

]
≤

√√√√√EEσ

∥∥∥∥∥ 1n
n∑

i=1

σiXi

∥∥∥∥∥
2

2

 =

√
E
[
∥X∥22

]
n

.

Using Proposition 1, we can show that ĝ ∈ argming∈G R̂iskabs(g) (for the function class G
defined in Proposition 1) satisfies5

E[Riskabs(ĝ)] ≤ inf
g∈G

Riskabs(g) +O

(√
E∥X∥22

n

)
.

But why should we care about Riskabs(ĝ) (or the risk corresponding to any other surrogate
loss) if we ultimately care about classification? One reason is that small Riskabs(ĝ) implies small
err(sign ◦ĝ), because 1{z ≤ 0} ≤ |1 − z|.6 In fact, we can improve this comparison by a factor of
two if we allow thresholding ĝ at a different value other than zero.7

Proposition 2. For any g : X → R, there exists θ ∈ R such that

E[1{Y sign(g(X)− θ) ≤ 0}] ≤ 1

2
E[|Y − g(X)|].

Proof. WLOG assume g(x) ∈ [−1, 1] for all x ∈ X . Let θ ∼ Uniform([−1, 1]). If Y = +1, then

Eθ[1{Y (g(X)− θ) ≤ 0}] = Prθ[θ ≥ g(X)] =
1− g(X)

2
=

|Y − g(X)|
2

.

If Y = −1, then

Eθ[1{Y (g(X)− θ) ≤ 0}] = Prθ[θ ≤ g(X)] =
g(X)− (−1)

2
=

|g(X)− Y |
2

.

So

Eθ[EX,Y [1{Y sign(g(X)− θ) ≤ 0}]] = EX,Y

[
|Y − g(X)|

2

]
.

However, what is still not clear is why it is meaningful to compare Riskabs(ĝ) to infg∈G Riskabs(g).

5Getting a corresponding “high probability” result is also easy if we assume the distribution of X is bounded.
6A similar comparison holds for (scalings of) the other surrogate losses mentioned above.
7Notice that if g(x) ∈ {−1, 1} for all x ∈ X , then Riskabs(g) = 2 err(sign ◦g).
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3 Excess risks

In statistical learning, we typically compare the error rate of the learned classifier to the best
achievable error rate using hypotheses from a hypothesis class H. So far in our development, we
are comparing to the best achievable Riskabs using functions from some function class G. Can these
comparisons be reconciled?

There is a general theory for relating such excess risks in the extreme case where H is all
classifiers h : X → {−1, 1}, and G is all functions g : X → R (Zhang, 2004; Bartlett et al., 2006).
Below, we instantiate it for the special case of absolute error.

What is the best possible error rate achievable by any classifier? Define

η(x) := Pr(Y = 1 | X = x) for all x ∈ X .

Then, for any x ∈ X and h(x) ∈ {−1, 1}, we have

E[1{h(X) ̸= Y } | X = x] = η(x)1{h(x) = −1}+ (1− η(x))1{h(x) = +1},

and this is minimized by
h(x) = sign(2η(x)− 1).

The classifier with this property is called the Bayes (optimal) classifier, and its error rate is called
the Bayes error rate or Bayes (classification) risk.

What is the best possible mean absolute error achievable by any function? For any x ∈ X and
g(x) ∈ [−1, 1], we have

E[|Y − g(X)| | X = x] = η(x)|1− g(x)|+ (1− η(x))|−1− g(x)|
= η(x)(1− g(x)) + (1− η(x))(1 + g(x))

= g(x)(1− 2η(x)),

which is minimized by
g(x) = sign(2η(x)− 1).

So the Bayes classifier also achieves the smallest possible mean absolute error, and its mean absolute
error is exactly twice the Bayes error rate. (The absolute error is somewhat special in this regard.)

We can now relate the excess error rate to the excess mean absolute error. For any g : X → R,
there exists θ ∈ R such that

Pr[sign(g(X)− θ) ̸= Y ]− inf
h⋆

Pr[h⋆(X) ̸= Y ] ≤ 1

2

(
E[|Y − g(X)|]− inf

g⋆
E[|Y − g⋆(X)|]

)
. (1)

Similar relationships can be established for other surrogate losses. For example, for squared error,
we have

Pr[sign(g(X)) ̸= Y ]− inf
h⋆

Pr[h⋆(X) ̸= Y ] ≤
√
E[(Y − g(X))2]− inf

g⋆
E[(Y − g⋆(X))2], (2)

where the minimum mean squared error is achieved by the conditional mean function

x 7→ E[Y | X = x] = 2η(x)− 1.

The main deficiency of this theory is that it is difficult to guarantee small excess surrogate
risk without assuming that the g⋆ achieving the infimum in (1) or (2) is contained in (or well-
approximated by some function in) the function class G used by the learner. It does not directly
justify the use of surrogate loss functions if one only seeks to compare to the best error rate
achievable within a given hypothesis class H.
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