COMS 4773: Rademacher complexity

Daniel Hsu

March 11, 2024

1 Uniform convergence, again

Recall the uniform convergence theorem.

Theorem 1. Let $\mathcal{F} \subset \{-1,1\}^{\mathcal{X}}$ have VC dimension $d < \infty$. Let μ be a probability distribution on \mathcal{X} , and let μ_n be the empirical distribution based on an iid sample from μ of size n. Then for any $\epsilon > 0$,

$$\Pr\left(\sup_{f\in\mathcal{F}}\mu_n f - \mu f \ge \epsilon\right) \le \exp\left(-\frac{n\epsilon^2}{8}\right) + 2\binom{n}{\le d} \exp\left(-\frac{n\epsilon^2}{32}\right).$$

This implies that, for any $\delta \in (0,1)$, with probability at least $1-\delta$,

$$\sup_{f \in \mathcal{F}} \mu_n f - \mu f \le O\left(\sqrt{\frac{d \log n + \log(1/\delta)}{n}}\right).$$

A different way to prove Theorem 1 starts by using McDiarmid's inequality. Let X_1, \ldots, X_n be an iid sample from μ , and let $\mathcal{F} \subset \{-1, 1\}^{\mathcal{X}}$ be a function class. For any $\delta \in (0, 1)$, with probability at least $1 - \delta$,

$$\sup_{f \in \mathcal{F}} \mu_n f - \mu f \le \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mu_n f - \mu f \right] + \sqrt{\frac{2 \log(1/\delta)}{n}}.$$

McDiarmid's inequality applies because the random variable on the left-hand side satisfies the (c_1, \ldots, c_n) -bounded differences property with $c_i = 2/n$ for all i. So the main task is to bound the expectation on the right-hand side.

Let μ'_n be the empirical distribution on an independent iid sample of size n, X'_1, \ldots, X'_n (the ghost sample). Instead of using conditional expectation notations, we shall write \mathbb{E} for expectation with respect to $X'_{1:n}$, and we write \mathbb{E}' for expectation with respect to $X'_{1:n}$. Then $\mu f = \mathbb{E}'[\mu'_n f]$, and therefore

$$\sup_{f \in \mathcal{F}} \mu_n f - \mu f = \sup_{f \in \mathcal{F}} \mathbb{E}' \left[\mu_n f - \mu'_n f \right] \le \mathbb{E}' \left[\sup_{f \in \mathcal{F}} \mu_n f - \mu'_n f \right]$$

where the inequality follows by Jensen's inequality and the convexity of the supremum of affine functions. So we have

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu f\right] \leq \mathbb{E}\,\mathbb{E}'\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu'_n f\right].$$

Letting $\sigma = (\sigma_1, \dots, \sigma_n)$ be a Rademacher random vector, we also have

$$\mathbb{E} \,\mathbb{E}' \left[\sup_{f \in \mathcal{F}} \mu_n f - \mu'_n f \right] = \mathbb{E} \,\mathbb{E}' \,\mathbb{E}_\sigma \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \sigma_i \left(f(X_i) - f(X'_i) \right) \right]$$

where \mathbb{E}_{σ} denotes expectation with respect to σ . Since $X_{1:n}$ and $X'_{1:n}$ have the same distribution, and using the symmetry of σ ,

$$\mathbb{E} \mathbb{E}' \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(X_{i}) - f(X_{i}') \right) \right] \leq \mathbb{E} \mathbb{E}' \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(X_{i}) + \sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} (-\sigma_{i}) f(X_{i}') \right]$$

$$= 2 \mathbb{E} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f(X_{i}) \right]$$

$$= 2 \mathbb{E} \mathbb{E}_{\sigma} \left[\sup_{v \in \mathcal{F}(X_{1:n})} \langle \sigma, v \rangle_{n} \right].$$

(Recall our notations for empirical inner product $\langle u, v \rangle_n = \frac{1}{n} \sum_{i=1}^n u_i v_i$ and empirical norm $||v||_n = \sqrt{\langle v, v \rangle_n}$.) Since each $v \in \mathcal{F}(X_{1:n})$ has $||v||_n = 1$, it follows by Massart's lemma that

$$\mathbb{E}_{\sigma} \left[\sup_{v \in \mathcal{F}(X_{1:n})} \langle \sigma, v \rangle_n \right] \leq \sqrt{\frac{2 \log |\mathcal{F}(X_{1:n})|}{n}}.$$

So, if \mathcal{F} has VC dimension $d < \infty$, we conclude by Sauer's lemma that

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu f\right] \le 2\sqrt{\frac{2\log\binom{n}{\leq d}}{n}}.$$

2 Rademacher complexity

Going back a few steps in this development, we have the inequality

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu f\right] \le 2\,\mathbb{E}[\operatorname{Rad}_n(\mathcal{F}(X_{1:n}))]. \tag{1}$$

where, for any $V \subseteq \mathbb{R}^n$,

$$\operatorname{Rad}_n(V) = \mathbb{E}_{\sigma} \left[\sup_{v \in V} \langle \sigma, v \rangle_n \right].$$

The quantity $\mathbb{E}[\operatorname{Rad}_n(\mathcal{F}(X_{1:n}))]$ is called the *(one-sided) Rademacher complexity*¹ of \mathcal{F} (which also depends on μ and n).² The Rademacher complexity measures how well functions from \mathcal{F} can be used to "correlate" the sample $X_{1:n}$ with random signs.

¹The one-sided Rademacher complexity is somewhat non-standard, but it is more convenient in some technical respects and sufficient for our purposes. The usual (two-sided) Rademacher complexity of \mathcal{F} is defined with $|\langle \sigma, v \rangle_n|$ in place of $\langle \sigma, v \rangle_n$ in the definition of Rad_n.

²Sometimes Rad_n($\mathcal{F}(X_{1:n})$) itself is called the *empirical Rademacher complexity* of \mathcal{F} .

- A "complex" class is one that is able to make this correlation $\operatorname{Rad}_n(\mathcal{F}(X_{1:n}))$ large (in expectation with respect to $X_{1:n}$). For example, the set of all $\{-1,1\}$ -valued functions on \mathcal{X} has $\operatorname{Rad}_n(\mathcal{F}(X_{1:n})) = 1$.
- A class that contains only a single function (which should be considered "simple" by any measure...) has $\operatorname{Rad}_n(\mathcal{F}(X_{1:n})) = 0$.

Note that Rademacher complexity is well-defined not just for $\{-1,1\}$ -valued functions, but for any class of functions real-valued functions (although some normalization is needed to make the quantity meaningful). Another feature of Rademacher complexity is that it is sensitive to the data distribution μ . These two "features" of Rademacher complexity distinguish it from VC dimension.

3 Properties of (empirical) Rademacher complexity

Proposition 1. Let A and B be subsets of \mathbb{R}^n . Then the following hold.

- 1. If $A \subseteq B$, then $\operatorname{Rad}_n(A) \leq \operatorname{Rad}_n(B)$.
- 2. $\operatorname{Rad}_n(A+B) = \operatorname{Rad}_n(A) + \operatorname{Rad}_n(B)$.
- 3. $\operatorname{Rad}_n(cA) = |c| \operatorname{Rad}_n(A)$.
- 4. $\operatorname{Rad}_n(\operatorname{conv}(A)) = \operatorname{Rad}_n(A)$.
- 5. (Lipschitz contraction.) Let ϕ_1, \ldots, ϕ_n be L-Lipschitz \mathbb{R} -valued functions on a domain $D \subseteq \mathbb{R}$: i.e., for each $i \in [n]$,

$$\phi_i(t) - \phi_i(t') \le L|t - t'|$$
 for all $t, t' \in D$.

Define

$$\phi(A) = \{ (\phi_1(a_1), \dots, \phi_n(a_n)) : (a_1, \dots, a_n) \in A \}.$$

If $A \subseteq D^n$, then

$$\operatorname{Rad}_n(\phi(A)) \le L \operatorname{Rad}_n(A).$$

- *Proof.* 1. Since $A \subseteq B$, we have $\{\langle \sigma, v \rangle_n : v \in A\} \subseteq \{\langle \sigma, v \rangle : v \in B\}$; since a supremum over a set can only stay the same or increase by adding more vectors to the set, it follows that $\sup_{v \in A} \langle \sigma, v \rangle_n \leq \sup_{v \in B} \langle \sigma, v \rangle_n$ for all σ , and so $\operatorname{Rad}_n(A) \leq \operatorname{Rad}_n(B)$.
 - 2. Since $A + B = \{a + b : a \in A, b \in B\}$, it follows that $\sup_{v \in A + B} \langle \sigma, v \rangle_n = \sup_{a \in A} \sup_{b \in B} \langle \sigma, a + b \rangle_n = \sup_{a \in A} \langle \sigma, a \rangle_n + \sup_{b \in B} \langle \sigma, b \rangle_n$ for all σ , so $\operatorname{Rad}_n(A + B) = \operatorname{Rad}_n(A) + \operatorname{Rad}_n(B)$.
 - 3. If $c \geq 0$, then $\sup_{v \in cA} \langle \sigma, v \rangle_n = \sup_{a \in A} \langle \sigma, ca \rangle_n = \sup_{a \in A} |c| \langle \sigma, a \rangle_n = |c| \sup_{a \in A} \langle \sigma, a \rangle_n$ for all σ . If c < 0, then $\sup_{v \in cA} \langle \sigma, v \rangle_n = \sup_{a \in A} \langle \sigma, ca \rangle_n = \sup_{a \in A} |c| \langle -\sigma, a \rangle_n = |c| \sup_{a \in A} \langle -\sigma, a \rangle_n$ for all σ . In either case, σ and $-\sigma$ have the same distribution, so we conclude that $\operatorname{Rad}_n(cA) = |c| \operatorname{Rad}_n(A)$.
 - 4. By definition, for any $v \in \text{conv}(A)$, we can write $v = c_1v_1 + \cdots + c_kv_k$ for some $k \in \mathbb{N}$, some $c = (c_1, \ldots, c_k) \in \Delta^{k-1}$, and some $v_1, \ldots, v_k \in A$. For such v, we have $\langle \sigma, v \rangle_n = \sum_{i=1}^k c_i \langle \sigma, v_i \rangle_n \leq \max_{i \in [n]} \langle \sigma, v_i \rangle_n$. So $\sup_{v \in \text{conv}(A)} \langle \sigma, v \rangle_n \leq \sup_{a \in A} \langle \sigma, a \rangle_n$ for all σ , and therefore $\text{Rad}_n(\text{conv}(A)) \leq \text{Rad}_n(A)$. Since $A \subseteq \text{conv}(A)$, it also follows that $\text{Rad}_n(A) \leq \text{Rad}_n(\text{conv}(A))$ by the first property above.

5. We show that by replacing $\phi_1(\cdot)$ with L can only increase the Rademacher average. Write \mathbb{E}_{σ_1} for expectation over σ_1 only (conditioning on $\sigma_2, \ldots, \sigma_n$). Then

$$\begin{split} &\mathbb{E}_{\sigma_{1}}\left[\sup_{v \in \phi(A)}\langle \sigma, v \rangle_{n}\right] \\ &= \mathbb{E}_{\sigma_{1}}\left[\sup_{a \in A} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \phi_{i}(a_{i})\right] \\ &= \frac{1}{2} \left(\sup_{a \in A} \frac{1}{n} \phi_{1}(a_{1}) + \underbrace{\frac{1}{n} \sum_{i=2}^{n} \sigma_{i} \phi_{i}(a_{i})}_{B}\right) + \underbrace{\frac{1}{2} \left(\sup_{a' \in A} -\frac{1}{n} \phi_{1}(a'_{1}) + \underbrace{\frac{1}{n} \sum_{i=2}^{n} \sigma_{i} \phi_{i}(a'_{i})}_{B'}\right)}_{= \sup_{a, a' \in A} \frac{1}{2n} \phi_{1}(a_{1}) - \underbrace{\frac{1}{2n} \phi_{1}(a'_{1}) + \frac{1}{2} (B + B')}_{\leq \sup_{a, a' \in A} \frac{L}{2n} |a_{1} - a'_{1}| + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a, a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{1}{2} (B + B')}_{= \sup_{a' \in A} \frac{L}{2n} (a_{1} - a'_{1}) + \underbrace{\frac{$$

Repeat this for ϕ_2, \ldots, ϕ_n to get

$$\mathbb{E}_{\sigma} \left[\sup_{v \in \phi(A)} \langle \sigma, v \rangle_n \right] \leq \mathbb{E}_{\sigma} \left[\sup_{v \in LA} \langle \sigma, v \rangle_n \right]$$

(where $LA = \{La : a \in A\}$). Then apply the third property to prove the claim.

4 Lower bound

The following is a complement to (1).

Proposition 2. For any $\mathcal{F} \subset [-1,1]^{\mathcal{X}}$ and any probability distribution μ on \mathcal{X} ,

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu f\right] + \mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu f - \mu_n f\right] \ge \mathbb{E}\operatorname{Rad}_n(\mathcal{F}(X_{1:n})) - \sup_{f\in\mathcal{F}}|\mu f| \frac{1}{\sqrt{n}}.$$

Together, (1) and Proposition 2 show that Rademacher complexity essentially characterizes distribution-specific uniform convergence.

Proof of Proposition 2.

$$\operatorname{Rad}_{n}(\mathcal{F}(X_{1:n})) = \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) + \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \mu f \right]$$

$$\leq \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) \right] + \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \mu f \right]$$

$$\leq \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) \right] + \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} |\mu f| \left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \right| \right]$$

$$= \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) \right] + \sup_{f \in \mathcal{F}} |\mu f| \mathbb{E}_{\sigma} \left[\left| \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \right| \right]$$

$$\leq \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) \right] + \sup_{f \in \mathcal{F}} |\mu f| \frac{1}{\sqrt{n}}.$$

Now let X'_1, \ldots, X'_n be an independent iid sample from μ , and write \mathbb{E}' for expectation with respect to $X'_{1:n}$. Then we have

$$\mathbb{E} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i}(f(X_{i}) - \mu f) \right] = \mathbb{E} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(X_{i}) - \mathbb{E}' f(X'_{i}) \right) \right]$$

$$\leq \mathbb{E} \mathbb{E}' \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(X_{i}) - f(X'_{i}) \right) \right]$$

$$= \mathbb{E} \mathbb{E}' \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f(X_{i}) - \mathbb{E} f(X_{i}) \right) - \sigma_{i} \left(f(X'_{i}) - \mathbb{E}' f(X'_{i}) \right) \right]$$

$$= \mathbb{E} \mathbb{E}' \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(f(X_{i}) - \mathbb{E} f(X_{i}) \right) - \left(f(X'_{i}) \right) - \mathbb{E}' f(X'_{i}) \right) \right]$$

$$\leq \mathbb{E} \mathbb{E}' \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \left(f(X_{i}) - \mathbb{E} f(X_{i}) \right) + \sup_{f \in \mathcal{F}} - \left(f(X'_{i}) \right) - \mathbb{E}' f(X'_{i}) \right) \right]$$

$$= \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mu_{n} f - \mu f \right] + \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mu_{f} - \mu_{n} f \right].$$

We conclude that

$$\mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu_n f - \mu f\right] + \mathbb{E}\left[\sup_{f\in\mathcal{F}}\mu f - \mu_n f\right] \ge \mathbb{E}\operatorname{Rad}_n(\mathcal{F}(X_{1:n})) - \sup_{f\in\mathcal{F}}|\mu f| \frac{1}{\sqrt{n}}.$$

A simple corollary of Proposition 2 is that, for any $\mathcal{F} \subset [-1,1]^{\mathcal{X}}$ and any probability distribution μ on \mathcal{X} ,

$$\max \left\{ \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mu_n f - \mu f \right], \mathbb{E} \left[\sup_{f \in \mathcal{F}} \mu f - \mu_n f \right] \right\} \ge \frac{1}{2} \mathbb{E} \operatorname{Rad}_n(\mathcal{F}(X_{1:n})) - \sup_{f \in \mathcal{F}} |\mu f| \frac{1}{2\sqrt{n}}.$$

Notice that if \mathcal{F} is closed under negation (i.e., $\mathcal{F} = \mathcal{F} \cup (-\mathcal{F})$), then both terms in the max are the same. But it is not generally possible to replace the max with min.³

To see this, consider the class \mathcal{F} of all characteristic functions $f_S(x) = \mathbb{1}\{x \in S\}$ of finite subsets of [0,1], and let μ be the uniform distribution on [0,1]. The Rademacher complexity of \mathcal{F} is 1/2, but $\mathbb{E}[\sup_{f \in \mathcal{F}} \mu f - \mu_n f] = 0$.