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1 Uniform convergence, again

Recall the uniform convergence theorem.

Theorem 1. Let F ⊂ {−1, 1}X have VC dimension d < ∞. Let µ be a probability distribution on
X , and let µn be the empirical distribution based on an iid sample from µ of size n. Then for any
ϵ > 0,

Pr

(
sup
f∈F

µnf − µf ≥ ϵ

)
≤ exp

(
−nϵ2

8

)
+ 2

(
n

≤ d

)
exp

(
−nϵ2

32

)
.

This implies that, for any δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

µnf − µf ≤ O

(√
d log n+ log(1/δ)

n

)
.

A different way to prove Theorem 1 starts by using McDiarmid’s inequality. Let X1, . . . , Xn be
an iid sample from µ, and let F ⊂ {−1, 1}X be a function class. For any δ ∈ (0, 1), with probability
at least 1− δ,

sup
f∈F

µnf − µf ≤ E

[
sup
f∈F

µnf − µf

]
+

√
2 log(1/δ)

n
.

McDiarmid’s inequality applies because the random variable on the left-hand side satisfies the
(c1, . . . , cn)-bounded differences property with ci = 2/n for all i. So the main task is to bound the
expectation on the right-hand side.

Let µ′
n be the empirical distribution on an independent iid sample of size n, X ′

1, . . . , X
′
n (the

ghost sample). Instead of using conditional expectation notations, we shall write E for expectation
with respect to X1:n, and we write E′ for expectation with respect to X ′

1:n. Then µf = E′[µ′
nf ],

and therefore

sup
f∈F

µnf − µf = sup
f∈F

E′[µnf − µ′
nf
]
≤ E′

[
sup
f∈F

µnf − µ′
nf

]
where the inequality follows by Jensen’s inequality and the convexity of the supremum of affine
functions. So we have

E

[
sup
f∈F

µnf − µf

]
≤ EE′

[
sup
f∈F

µnf − µ′
nf

]
.
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Letting σ = (σ1, . . . , σn) be a Rademacher random vector, we also have

EE′

[
sup
f∈F

µnf − µ′
nf

]
= EE′ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi
(
f(Xi)− f(X ′

i)
)]

where Eσ denotes expectation with respect to σ. Since X1:n and X ′
1:n have the same distribution,

and using the symmetry of σ,

EE′ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi
(
f(Xi)− f(X ′

i)
)]

≤ EE′ Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(Xi) + sup
f∈F

1

n

n∑
i=1

(−σi)f(X
′
i)

]

= 2EEσ

[
sup
f∈F

1

n

n∑
i=1

σif(Xi)

]

= 2EEσ

[
sup

v∈F(X1:n)
⟨σ, v⟩n

]
.

(Recall our notations for empirical inner product ⟨u, v⟩n = 1
n

∑n
i=1 uivi and empirical norm ∥v∥n =√

⟨v, v⟩n.) Since each v ∈ F(X1:n) has ∥v∥n = 1, it follows by Massart’s lemma that

Eσ

[
sup

v∈F(X1:n)
⟨σ, v⟩n

]
≤
√

2 log|F(X1:n)|
n

.

So, if F has VC dimension d < ∞, we conclude by Sauer’s lemma that

E

[
sup
f∈F

µnf − µf

]
≤ 2

√
2 log

(
n
≤d

)
n

.

2 Rademacher complexity

Going back a few steps in this development, we have the inequality

E

[
sup
f∈F

µnf − µf

]
≤ 2E[Radn(F(X1:n))]. (1)

where, for any V ⊆ Rn,

Radn(V ) = Eσ

[
sup
v∈V

⟨σ, v⟩n
]
.

The quantity E[Radn(F(X1:n))] is called the (one-sided) Rademacher complexity1 of F (which also
depends on µ and n).2 The Rademacher complexity measures how well functions from F can be
used to “correlate” the sample X1:n with random signs.

1The one-sided Rademacher complexity is somewhat non-standard, but it is more convenient in some technical
respects and sufficient for our purposes. The usual (two-sided) Rademacher complexity of F is defined with |⟨σ, v⟩n|
in place of ⟨σ, v⟩n in the definition of Radn.

2Sometimes Radn(F(X1:n)) itself is called the empirical Rademacher complexity of F .
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• A “complex” class is one that is able to make this correlation Radn(F(X1:n)) large (in expec-
tation with respect to X1:n). For example, the set of all {−1, 1}-valued functions on X has
Radn(F(X1:n)) = 1.

• A class that contains only a single function (which should be considered “simple” by any
measure. . . ) has Radn(F(X1:n)) = 0.

Note that Rademacher complexity is well-defined not just for {−1, 1}-valued functions, but for
any class of functions real-valued functions (although some normalization is needed to make the
quantity meaningful). Another feature of Rademacher complexity is that it is sensitive to the data
distribution µ. These two “features” of Rademacher complexity distinguish it from VC dimension.

3 Properties of (empirical) Rademacher complexity

Proposition 1. Let A and B be subsets of Rn. Then the following hold.

1. If A ⊆ B, then Radn(A) ≤ Radn(B).

2. Radn(A+B) = Radn(A) + Radn(B).

3. Radn(cA) = |c|Radn(A).

4. Radn(conv(A)) = Radn(A).

5. (Lipschitz contraction.) Let ϕ1, . . . , ϕn be L-Lipschitz R-valued functions on a domain D ⊆ R:
i.e., for each i ∈ [n],

ϕi(t)− ϕi(t
′) ≤ L|t− t′| for all t, t′ ∈ D.

Define
ϕ(A) = {(ϕ1(a1), . . . , ϕn(an)) : (a1, . . . , an) ∈ A}.

If A ⊆ Dn, then
Radn(ϕ(A)) ≤ LRadn(A).

Proof. 1. Since A ⊆ B, we have {⟨σ, v⟩n : v ∈ A} ⊆ {⟨σ, v⟩ : v ∈ B}; since a supremum over
a set can only stay the same or increase by adding more vectors to the set, it follows that
supv∈A⟨σ, v⟩n ≤ supv∈B⟨σ, v⟩n for all σ, and so Radn(A) ≤ Radn(B).

2. Since A+B = {a+ b : a ∈ A, b ∈ B}, it follows that supv∈A+B⟨σ, v⟩n = supa∈A supb∈B⟨σ, a+
b⟩n = supa∈A⟨σ, a⟩n + supb∈B⟨σ, b⟩n for all σ, so Radn(A+B) = Radn(A) + Radn(B).

3. If c ≥ 0, then supv∈cA⟨σ, v⟩n = supa∈A⟨σ, ca⟩n = supa∈A|c|⟨σ, a⟩n = |c| supa∈A⟨σ, a⟩n for all σ.
If c < 0, then supv∈cA⟨σ, v⟩n = supa∈A⟨σ, ca⟩n = supa∈A|c|⟨−σ, a⟩n = |c| supa∈A⟨−σ, a⟩n for
all σ. In either case, σ and −σ have the same distribution, so we conclude that Radn(cA) =
|c|Radn(A).

4. By definition, for any v ∈ conv(A), we can write v = c1v1 + · · · + ckvk for some k ∈ N,
some c = (c1, . . . , ck) ∈ ∆k−1, and some v1, . . . , vk ∈ A. For such v, we have ⟨σ, v⟩n =∑k

i=1 ci⟨σ, vi⟩n ≤ maxi∈[n]⟨σ, vi⟩n. So supv∈conv(A)⟨σ, v⟩n ≤ supa∈A⟨σ, a⟩n for all σ, and
therefore Radn(conv(A)) ≤ Radn(A). Since A ⊆ conv(A), it also follows that Radn(A) ≤
Radn(conv(A)) by the first property above.
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5. We show that by replacing ϕ1(·) with L· can only increase the Rademacher average. Write
Eσ1 for expectation over σ1 only (conditioning on σ2, . . . , σn). Then

Eσ1

[
sup

v∈ϕ(A)
⟨σ, v⟩n

]

= Eσ1

[
sup
a∈A

1

n

n∑
i=1

σiϕi(ai)

]

=
1

2

sup
a∈A

1

n
ϕ1(a1) +

1

n

n∑
i=2

σiϕi(ai)︸ ︷︷ ︸
B

+
1

2

 sup
a′∈A

− 1

n
ϕ1(a

′
1) +

1

n

n∑
i=2

σiϕi(a
′
i)︸ ︷︷ ︸

B′


= sup

a,a′∈A

1

2n
ϕ1(a1)−

1

2n
ϕ1(a

′
1) +

1

2

(
B +B′)

≤ sup
a,a′∈A

L

2n
|a1 − a′1|+

1

2

(
B +B′)

= sup
a,a′∈A

L

2n
(a1 − a′1) +

1

2

(
B +B′)

=
1

2

(
sup
a∈A

1

n
La1 +

1

n

n∑
i=2

σiϕi(ai)

)
+

1

2

(
sup
a′∈A

− 1

n
La′1 +

1

n

n∑
i=2

σiϕi(a
′
i)

)

= Eσ1

[
sup
a∈A

1

n
σ1(La1) +

1

n

n∑
i=2

σiϕi(ai)

]
.

Repeat this for ϕ2, . . . , ϕn to get

Eσ

[
sup

v∈ϕ(A)
⟨σ, v⟩n

]
≤ Eσ

[
sup
v∈LA

⟨σ, v⟩n
]

(where LA = {La : a ∈ A}). Then apply the third property to prove the claim.

4 Lower bound

The following is a complement to (1).

Proposition 2. For any F ⊂ [−1, 1]X and any probability distribution µ on X ,

E

[
sup
f∈F

µnf − µf

]
+ E

[
sup
f∈F

µf − µnf

]
≥ ERadn(F(X1:n))− sup

f∈F
|µf | 1√

n
.

Together, (1) and Proposition 2 show that Rademacher complexity essentially characterizes
distribution-specific uniform convergence.
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Proof of Proposition 2.

Radn(F(X1:n)) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf) +
1

n

n∑
i=1

σiµf

]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf)

]
+ Eσ

[
sup
f∈F

1

n

n∑
i=1

σiµf

]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf)

]
+ Eσ

[
sup
f∈F

|µf |

∣∣∣∣∣ 1n
n∑

i=1

σi

∣∣∣∣∣
]

= Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf)

]
+ sup

f∈F
|µf |Eσ

[∣∣∣∣∣ 1n
n∑

i=1

σi

∣∣∣∣∣
]

≤ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf)

]
+ sup

f∈F
|µf | 1√

n
.

Now let X ′
1, . . . , X

′
n be an independent iid sample from µ, and write E′ for expectation with respect

to X ′
1:n. Then we have

EEσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− µf)

]
= EEσ

[
sup
f∈F

1

n

n∑
i=1

σi
(
f(Xi)− E′ f(X ′

i)
)]

≤ EE′ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi
(
f(Xi)− f(X ′

i)
)]

= EE′ Eσ

[
sup
f∈F

1

n

n∑
i=1

σi(f(Xi)− E f(Xi))− σi
(
f(X ′

i))− E′ f(X ′
i)
)]

= EE′

[
sup
f∈F

1

n

n∑
i=1

(f(Xi)− E f(Xi))−
(
f(X ′

i))− E′ f(X ′
i)
)]

≤ EE′

[
sup
f∈F

1

n

n∑
i=1

(f(Xi)− E f(Xi)) + sup
f∈F

−
(
f(X ′

i))− E′ f(X ′
i)
)]

= E

[
sup
f∈F

µnf − µf

]
+ E

[
sup
f∈F

µf − µnf

]
.

We conclude that

E

[
sup
f∈F

µnf − µf

]
+ E

[
sup
f∈F

µf − µnf

]
≥ ERadn(F(X1:n))− sup

f∈F
|µf | 1√

n
.

A simple corollary of Proposition 2 is that, for any F ⊂ [−1, 1]X and any probability distribution
µ on X ,

max

{
E

[
sup
f∈F

µnf − µf

]
,E

[
sup
f∈F

µf − µnf

]}
≥ 1

2
ERadn(F(X1:n))− sup

f∈F
|µf | 1

2
√
n
.
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Notice that if F is closed under negation (i.e., F = F ∪ (−F)), then both terms in the max are the
same. But it is not generally possible to replace the max with min.3

3To see this, consider the class F of all characteristic functions fS(x) = 1{x ∈ S} of finite subsets of [0, 1], and
let µ be the uniform distribution on [0, 1]. The Rademacher complexity of F is 1/2, but E

[
supf∈F µf − µnf

]
= 0.

6


	Uniform convergence, again
	Rademacher complexity
	Properties of (empirical) Rademacher complexity
	Lower bound

