COMS 4773: Minimax lower bounds

Daniel Hsu

May 1, 2024

1 Learning/estimation problems

- Z is the dataset (e.g., an iid sample of n training examples); Z is the space of possible datasets.
- P_{θ} is a probability distribution for Z, one per $\theta \in \Theta$ (e.g., P_{θ} is distribution of n iid examples where each example is drawn from p_{θ} , a distribution over $\mathcal{X} \times \{-1, 1\}$)
- $f \colon \mathcal{Z} \to \Theta$ is an estimator a.k.a. learning algorithm
- $\ell(\hat{\theta}, \theta) \in \mathbb{R}_+$ is a measure of how bad $\hat{\theta}$ is as an estimate of θ
- Risk of f under P_{θ} :

$$\mathbb{E}_{Z \sim P_{\theta}}[\ell(f(Z), \theta)]$$

• Minimax risk

$$\min_{f} \max_{\theta \in \Theta} \mathbb{E}_{\theta}[\ell(f(Z), \theta)]$$

- Upper bound UB on minimax risk: design learning algorithm with worst-case risk $\leq UB$
- Lower bound LB on minimax risk: prove that every learning algorithm has worst-case risk $\geq LB$

1.1 Example: learning binary classifier

- Z is n training examples from $\mathcal{X} \times \{-1, 1\}$
- P_{θ} is a distribution where examples $Z = (X_i, Y_i)_{i=1}^n$ are iid from a probability distribution p_{θ} over $\mathcal{X} \times \{-1, 1\}$ indexed by $\theta \in \Theta$
 - Let $h_{\theta} \in \mathcal{H}$ be hypothesis from hypothesis class \mathcal{H} with smallest error rate under p_{θ}
- $f: \mathcal{Z} \to \Theta$ is an estimator that "guesses" $\theta \in \Theta$
 - Later, we'll show that if you have a good learning algorithm $A: \mathcal{Z} \to \mathcal{H}$, then you can get a good estimator $f: \mathcal{Z} \to \Theta$
- $\ell(\hat{\theta}, \theta) = \mathbb{1}\{\operatorname{err}_{\theta}(h_{\hat{\theta}}) \operatorname{err}_{\theta}(h_{\theta}) \geq \varepsilon\}$
- "Risk" of $\hat{\theta} = f(Z)$:

$$\mathbb{E}_{\theta}[\ell(\hat{\theta}, \theta)] = \Pr_{\theta}[\operatorname{err}_{\theta}(h_{\hat{\theta}}) - \operatorname{err}_{\theta}(h_{\theta}) \ge \varepsilon]$$

2 Le Cam's "two-point" method

- Only two possible data distributions, P_{-1} and P_{+1}
- You get data $Z \sim P_{\sigma}$, and then make a guess of σ ; what is the probability you guess σ incorrectly?
- Lemma:

$$\min_{f} \max_{\sigma \in \{-1,1\}} \Pr_{Z \sim P_{\sigma}}[f(Z) \neq \sigma] \ge \frac{1}{2} \sum_{z \in \mathcal{Z}} \min\{P_{-1}(z), P_{+1}(z)\}$$

$$= \frac{1}{2} (1 - \|P_{-1} - P_{+1}\|_{\text{TV}})$$

- Proof: Draw $\sigma \sim \text{unif}\{-1,1\}$, and then draw $Z \mid \sigma \sim P_{\sigma}$.
 - "Bayes (optimal) classifier" that minimizes $\Pr[f(Z) \neq \sigma]$ is

$$f^{\star}(z) = \begin{cases} +1 & \text{if } P_{+1}(z) > P_{-1}(z) \\ -1 & \text{if } P_{+1}(z) \le P_{-1}(z) \end{cases}$$

- Therefore

$$\Pr[f^{\star}(Z) \neq \sigma] = \frac{1}{2} P_{-1}[f^{\star}(Z) = +1] + \frac{1}{2} P_{+1}[f^{\star}(Z) = -1]$$

$$= \frac{1}{2} \sum_{z:P_{+1}(z)>P_{-1}(z)} P_{-1}(z) + \frac{1}{2} \sum_{z:P_{+1}(z)\leq P_{-1}(z)} P_{+1}(z)$$

$$= \frac{1}{2} \sum_{z\in\mathcal{Z}} \min\{P_{-1}(z), P_{+1}(z)\}$$

• Moreover,

$$\sum_{z \in \mathcal{Z}} \min\{P_{-1}(z), P_{+1}(z)\} = \sum_{z \in \mathcal{Z}} \left(\frac{P_{-1}(z) + P_{+1}(z)}{2} - \frac{|P_{-1}(z) - P_{+1}(z)|}{2}\right)$$

$$= 1 - \frac{1}{2} \sum_{z \in \mathcal{Z}} |P_{-1}(z) - P_{+1}(z)|$$

$$= 1 - \|P_{-1} - P_{+1}\|_{\text{TV}}$$

Therefore

$$\min_{f} \max_{\sigma \in \{-1,1\}} \Pr_{\sigma}[f(Z) \neq \sigma] \ge \frac{1}{2} (1 - \|P_{-1} - P_{+1}\|_{\text{TV}})$$

3 Using Le Cam's method

• Suppose \mathcal{H} has at least two hypotheses h_{-1} and h_{+1} that disagree on a point $x_0 \in \mathcal{X}$, with $h_{\sigma}(x_0) = \sigma$ for each $\sigma \in \{-1, 1\}$

- Consider two data distributions P_{-1} and P_{+1} for iid examples $(X_i, Y_i)_{i=1}^n$
 - Under P_{σ} : $X_i = x_0$ with probability 1, and

$$Y_i = \begin{cases} +\sigma & \text{with probability } \frac{1+\varepsilon}{2}, \\ -\sigma & \text{with probability } \frac{1-\varepsilon}{2}. \end{cases}$$

- So $\operatorname{err}_{\sigma}(h_{\sigma}) = 0.5 \varepsilon < 0.5 + \varepsilon = \operatorname{err}_{\sigma}(h_{-\sigma})$
- We'll show, using Le Cam's method, that if $n \lesssim \frac{1}{\epsilon^2} \log \frac{1}{\delta}$, then

$$\min_{f} \max_{\sigma \in \{-1,1\}} P_{\sigma}[f(Z) \neq \sigma] > \delta$$

- Application to statistical learning:
 - For arbitrary h, we have

$$\operatorname{err}_{\sigma}(h) = \begin{cases} \frac{1-\varepsilon}{2} & \text{if } h(x_0) = +\sigma\\ \frac{1+\varepsilon}{2} & \text{if } h(x_0) = -\sigma \end{cases}$$

- Given learning algorithm $A: \mathcal{Z} \to \mathcal{H}$, define $f_A(Z) = A(Z)(x_0)$
- If A can guarantee

$$\Pr[\operatorname{err}(A(Z)) - \min_{h \in \mathcal{H}} \operatorname{err}(h) \ge \varepsilon] \le \delta,$$

then

$$\max_{\sigma \in \{-1,1\}} P_{\sigma}[f_A(Z) \neq \sigma] \leq \delta.$$

- Therefore, no algorithm A can guarantee

$$\Pr[\operatorname{err}(A(Z)) - \min_{h \in \mathcal{H}} \operatorname{err}(h) \ge \varepsilon] \le \delta$$

if

$$n \lesssim \frac{1}{\varepsilon^2} \log \frac{1}{\delta}.$$

- Now let us prove the minimax lower bound
 - Given dataset $z = (x_i, y_i)_{i=1}^n$, let $m(z) = |\{i \in [n] : y_i = +1\}|$
 - Then

$$P_{+1}(z) = \left(\frac{1+\varepsilon}{2}\right)^{m(z)} \left(\frac{1-\varepsilon}{2}\right)^{n-m(z)},$$

$$P_{-1}(z) = \left(\frac{1-\varepsilon}{2}\right)^{m(z)} \left(\frac{1+\varepsilon}{2}\right)^{n-m(z)}.$$

So

$$\frac{P_{+1}(z)}{P_{-1}(z)} \ge 1 \Leftrightarrow \left(\frac{1+\varepsilon}{2}\right)^{2m(z)-n} \left(\frac{1-\varepsilon}{2}\right)^{n-2m(z)} \ge 1$$
$$\Leftrightarrow \left(\frac{1+\varepsilon}{1-\varepsilon}\right)^{2m(z)-n} \ge 1$$
$$\Leftrightarrow m(z) \ge n/2$$

- So by Le Cam's lemma

$$\min_{f} \max_{\sigma \in \{-1,1\}} P_{\sigma}[f(Z) \neq \sigma] \ge \frac{1}{2} \sum_{z \in \mathcal{Z}} \min\{P_{-1}(z), P_{+1}(z)\}$$

$$= \frac{1}{2} \left(\sum_{z \in \mathcal{Z}: m(z) \ge n/2} P_{-1}(z) + \sum_{z \in \mathcal{Z}: m(z) < n/2} P_{+1}(z) \right)$$

$$= \frac{1}{2} (P_{-1}(m(Z) \ge n/2) + P_{+1}(m(Z) < n/2))$$

- By Slud's inequality (Slud, 1977),

$$P_{-1}(m(Z) \ge n/2) \ge 1 - \Phi\left(\frac{n\varepsilon/2}{\sqrt{n(1-\varepsilon^2)/4}}\right)$$

and

$$P_{+1}(m(Z) < n/2) \ge 1 - \Phi\left(\frac{n\varepsilon/2}{\sqrt{n(1-\varepsilon^2)/4}}\right)$$

where Φ is the CDF for N(0,1)

- Conclusion: if $n \lesssim \frac{1}{\varepsilon^2} \log \frac{1}{\delta}$, then

$$\min_{f} \max_{\sigma \in \{-1,1\}} P_{\sigma}[f(Z) \neq \sigma] > \delta$$

- Difficulty distilled to testing problem between two possible distributions
- What about dependence on "complexity" of \mathcal{H} ? Need to consider testing problem with many possible distributions (not just two)
- Two typical approaches: Assouad's method, Fano's method
- Nice reference for statistics applications: Yu (1997)

4 Assouad's "hypercube" method

- Suppose there are 2^d distributions P_{σ} on \mathcal{Z} , one per $\sigma \in \{-1,1\}^d$
- Consider Hamming loss $\ell(\hat{\sigma}, \sigma) = \sum_{j=1}^{d} \mathbb{1}\{\hat{\sigma}_j \neq \sigma_j\}$
- Define $\sigma^{\oplus j}$ to be the vector in $\{-1,1\}^d$ that differs from σ in only the j-th position
- Assouad's Lemma:

$$\min_{f} \max_{\sigma \in \{-1,1\}^d} \mathbb{E}_{\sigma}[\ell(f(Z), \sigma)] \ge \frac{d}{2} - \frac{1}{2} \sum_{j=1}^d \max_{\sigma \in \{-1,1\}^d} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}}$$

• Proof: Define the mixture distributions

$$M_{+j} = \frac{1}{2^{d-1}} \sum_{\sigma \in \{-1,1\}^d : \sigma_j = +1} P_{\sigma}$$

$$M_{-j} = \frac{1}{2^{d-1}} \sum_{\sigma \in \{-1,1\}^d : \sigma_j = -1} P_{\sigma}$$

- First we bound $||M_{+j} - M_{-j}||_{TV}$:

$$||M_{+j} - M_{-j}||_{\text{TV}} = \left\| \frac{1}{2^{d-1}} \sum_{\sigma \in \{-1,1\}^d : \sigma_j = +1} P_{\sigma} - \frac{1}{2^{d-1}} \sum_{\sigma \in \{-1,1\}^d : \sigma_j = -1} P_{\sigma} \right\|_{\text{TV}}$$

$$= \frac{1}{2^{d-1}} \left\| \sum_{\sigma \in \{-1,1\}^d : \sigma_j = +1} (P_{\sigma} - P_{\sigma^{\oplus j}}) \right\|_{\text{TV}}$$

$$\leq \frac{1}{2^{d-1}} \sum_{\sigma \in \{-1,1\}^d : \sigma_j = +1} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}}$$

$$\leq \max_{\sigma \in \{-1,1\}^d} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}}$$

– Next, just like in the proof of Le Cam's lemma, we consider $\sigma \sim \text{unif}\{-1,1\}^d$ and $Z \mid \sigma \sim P_{\sigma}$. For an estimator f, let $\hat{\sigma} = f(Z)$:

$$\mathbb{E}\,\ell(\hat{\sigma},\sigma) = \sum_{j=1}^d \Pr[\hat{\sigma}_j \neq \sigma_j]$$

- Now observe that $\Pr[\hat{\sigma}_j \neq \sigma_j]$ is the expected zero-one loss of an estimator f that just has to guess σ_j based on Z, where the two possible distributions are M_{+j} and M_{-j}
- By Le Cam's lemma and our first step,

$$\Pr[\hat{\sigma}_{j} \neq \sigma_{j}] \geq \frac{1}{2} (1 - \|M_{+j} - M_{-j}\|_{\text{TV}})$$
$$\geq \frac{1}{2} \left(1 - \max_{\sigma \in \{-1,1\}^{d}} \|P_{\sigma} - P_{\sigma^{\oplus j}}\|_{\text{TV}} \right)$$

Plugging back into the previous displayed equation gives the claim.

5 Using Assouad's method

- Let \mathcal{H} have VC dim d, and let $S = \{s_1, \ldots, s_d\}$ be shattered by \mathcal{H}
- Define distribution P_{σ} for data $Z = (X_i, Y_i)_{i=1}^d$
 - Under P_{σ} : $X_i = s_j$ with probability 1/d; and given $X_i = s_j$,

$$Y_i = \begin{cases} +\sigma_j & \text{with probability } \frac{1+\varepsilon}{2}, \\ -\sigma_j & \text{with probability } \frac{1-\varepsilon}{2}. \end{cases}$$

- Let $h_{\sigma} \in \mathcal{H}$ be a hypothesis satisfying $h_{\sigma}(s_j) = \sigma_j$ for all $j \in [d]$ (existence of h_{σ} is guaranteed since S is shattered by \mathcal{H})
- Note that $\min_{h \in \mathcal{H}} \operatorname{err}_{\sigma}(h) = \operatorname{err}_{\sigma}(h_{\sigma}) = \frac{1-\varepsilon}{2}$
- For any h,

$$\operatorname{err}_{\sigma}(h) = \frac{1-\varepsilon}{2} + \frac{\varepsilon}{2} \sum_{j=1}^{d} \mathbb{1}\{h(s_j) \neq \sigma_j\}$$
$$= \operatorname{err}_{\sigma}(h_{\sigma}) + \frac{\varepsilon}{2} \sum_{j=1}^{d} \mathbb{1}\{h(s_j) \neq \sigma_j\}$$

ullet Suppose there is a learning algorithm A that can guarantee

$$\mathbb{E}[\operatorname{err}(A(Z)) - \min_{h \in \mathcal{H}} \operatorname{err}(h)] \le \frac{\varepsilon}{4}$$

• Define $f_A \colon \mathcal{Z} \to \{-1,1\}^d$ by $f_A(Z) = (h(s_1), \dots, h(s_d))$ where h = A(Z)

• This f_A satisfies

$$\mathbb{E}_{\sigma}[\ell(f_A(Z),\sigma)] \le \frac{1}{2}$$

for all $\sigma \in \{-1, 1\}^d$

• By Assouad's lemma,

$$\max_{\sigma \in \{-1,1\}^d} \mathbb{E}_{\sigma}[\ell(f_A(Z), \sigma)] \ge \frac{d}{2} - \frac{1}{2} \sum_{j=1}^d \max_{\sigma \in \{-1,1\}^d} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}}$$

• Therefore it must be that

$$\sum_{j=1}^{d} \max_{\sigma \in \{-1,1\}^d} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}} \ge d - 1$$
 (1)

• Pinsker's inequality:

$$||P - Q||_{\text{TV}} \le \sqrt{\frac{1}{2} \operatorname{RE}(P, Q)}$$

Recall

$$RE(P,Q) = \sum_{z \in \mathcal{Z}} P(z) \ln \frac{P(z)}{Q(z)}$$

• Let p_{σ} be the marginal distribution of (X_1, Y_1) under P_{σ} ; since examples from P_{σ} are iid, we have

$$RE(P_{\sigma}, P_{\sigma^{\oplus j}}) = n \cdot RE(p_{\sigma}, p_{\sigma^{\oplus j}})$$
(2)

- Note that p_{σ} and $p_{\sigma^{\oplus j}}$ differ only in the probabilities assigned to (s_j, σ_j) and $(s_j, -\sigma_j)$
- Therefore

$$\begin{split} \operatorname{RE}(p_{\sigma}, p_{\sigma^{\oplus j}}) &= p_{\sigma}(s_{j}, \sigma_{j}) \ln \frac{p_{\sigma}(s_{j}, \sigma_{j})}{p_{\sigma^{\oplus j}}(s_{j}, \sigma_{j})} + p_{\sigma}(s_{j}, -\sigma_{j}) \ln \frac{p_{\sigma}(s_{j}, -\sigma_{j})}{p_{\sigma^{\oplus j}}(s_{j}, -\sigma_{j})} \\ &= \frac{1}{d} \cdot \frac{1 + \varepsilon}{2} \ln \frac{\frac{1}{d} \cdot \frac{1 + \varepsilon}{2}}{\frac{1}{d} \cdot \frac{1 - \varepsilon}{2}} + \frac{1}{d} \cdot \frac{1 - \varepsilon}{2} \ln \frac{\frac{1}{d} \cdot \frac{1 - \varepsilon}{2}}{\frac{1}{d} \cdot \frac{1 + \varepsilon}{2}} \\ &= \frac{1}{d} \cdot \frac{1 + \varepsilon}{2} \ln \frac{1 + \varepsilon}{1 - \varepsilon} + \frac{1}{d} \cdot \frac{1 - \varepsilon}{2} \ln \frac{1 - \varepsilon}{1 + \varepsilon} \\ &= \frac{\varepsilon}{d} \ln \frac{1 + \varepsilon}{1 - \varepsilon} \end{split}$$

• Plugging back into (2),

$$RE(P_{\sigma}, P_{\sigma^{\oplus j}}) = \frac{n\varepsilon}{d} \ln \frac{1+\varepsilon}{1-\varepsilon} \approx \frac{2n\varepsilon^2}{d}$$

• Using Pinsker's, we get

$$\sum_{j=1}^{d} \max_{\sigma \in \{-1,1\}^d} ||P_{\sigma} - P_{\sigma^{\oplus j}}||_{\text{TV}} \lesssim \sum_{j=1}^{d} \sqrt{\frac{n\varepsilon^2}{d}} = \sqrt{dn\varepsilon^2}.$$

• Combining with (1),

$$n \ge \frac{d-1}{\varepsilon^2} \cdot \left(1 - \frac{1}{d}\right).$$

6 Fano's mutual information method

- Assouad's method is useful if you have:
 - "separable" loss function (sum over coordinates), and
 - "hypercube" structure of difficult testing problems
- General method: Fano's (mutual information) method
- Mutual information between X and Y:

$$I(X;Y) = \text{RE}(P_{X,Y}, P_X \otimes P_Y)$$
 (i.e., it is symmetric w.r.t. X and Y)
= $H(Y) - H(Y \mid X)$
= $H(X) - H(X \mid Y)$

where

$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P_X(x)H(Y \mid X = x)$$
 (conditional entropy)

• Joint entropy:

$$H(X,Y) = H(X) + H(Y \mid X)$$

= $H(Y) + H(X \mid Y)$

• Fano's inequality:

- Consider a "prior" distribution π on Θ , and $\theta \sim \pi$.
- Given θ , we draw data $Z \sim P_{\theta}$.
- Guess of θ is $\hat{\theta}(Z)$.
- If p_e is probability of guessing θ incorrectly, then

$$p_e \ge 1 - \frac{I(\theta; Z) + \ln 2}{H(\theta)}.$$

• Proof:

- Communication scenario: Alice is given (θ, Z) , but Bob is only given Z. What should Alice tell Bob so that he also knows θ ?
- Consider the following communication strategy for Alice:
 - 1. Compute estimator $\hat{\theta}(Z)$
 - 2. If $\hat{\theta}(Z) = \theta$, then send 0
 - 3. Else, send $(1, \theta)$
- If this scenario is repeated independently many times, then average message length is

$$\leq 1 + p_e H(\theta)$$

- Bob now has (θ, Z) ! So he received $\geq H(\theta, Z)$ bits from Nature + Alice
- Bob got H(Z) bits from Nature, so needed $\geq H(\theta \mid Z)$ bits of information from Alice
- Therefore

$$H(\theta \mid Z) \le 1 + p_e H(\theta)$$

which rearranges to

$$p_e \ge \frac{H(\theta \mid Z) - 1}{H(\theta)} = \frac{H(\theta) - I(\theta, Z) - 1}{H(\theta)} = 1 - \frac{I(\theta, Z) + 1}{H(\theta)}.$$

(Can improve the +1 to $+\ln 2$ using more precise calculations...)

- Also useful: $I(\theta, Z) = \min_{Q} RE(P_{Z|\theta}, Q \mid \theta)$ (whenever $P_{Z|\theta}/Q$ is valid)
 - Proof:

$$I(\theta, Z) = \mathbb{E}\left[\ln \frac{P_{Z|\theta}}{P_Z}\right]$$

$$= \mathbb{E}\left[\ln \frac{P_{Z|\theta}}{Q} - \ln \frac{P_Z}{Q}\right]$$

$$= \mathbb{E}\left[\ln \frac{P_{Z|\theta}}{Q}\right] - \mathbb{E}\left[\ln \frac{P_Z}{Q}\right]$$

$$= \text{RE}(P_{Z|\theta}, Q \mid \theta) - \text{RE}(P_Z, Q).$$

- Pick Q in a strategic way to make it easy to upper-bound $\mathrm{RE}(P_{Z\mid\theta},Q\mid\theta)$
- Suppose π is uniform on $\{\theta_1, \ldots, \theta_N\} \subset \Theta$, and

$$Q = \frac{1}{N} \sum_{j=1}^{N} P_{Z|\theta=\theta_j},$$

then by Jensen's inequality and convexity of RE in second argument,

$$\operatorname{RE}\left(P_{Z|\theta}, \frac{1}{N} \sum_{j=1}^{N} P_{Z|\theta=\theta_{j}} \mid \theta\right) \leq \frac{1}{N} \sum_{j=1}^{N} \operatorname{RE}(P_{Z|\theta}, P_{Z|\theta=\theta_{j}} \mid \theta)$$

$$= \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \operatorname{RE}(P_{Z|\theta=\theta_{i}}, P_{Z|\theta=\theta_{j}})$$

$$\leq \max_{i,j} \operatorname{RE}(P_{Z|\theta=\theta_{i}}, P_{Z|\theta=\theta_{j}})$$

$$= \max_{i,j} \operatorname{RE}(P_{\theta_{i}}, P_{\theta_{j}})$$

• Han and Verdú's "generalized" Fano inequality: Let $\widetilde{\Theta} = \{\theta_1, \dots, \theta_N\}$. Then

$$p_e \ge 1 - \frac{\max_{i,j} \operatorname{RE}(P_{\theta_i}, P_{\theta_j}) + \ln 2}{\ln N}$$

7 Using Fano's mutual information method

- Recipe to use the "generalized" Fano inequality:
 - 1. Find $\widetilde{\Theta} \subset \Theta$ such that for every distinct pair $\theta, \theta' \in \widetilde{\Theta}$, every estimator $\hat{\theta}$ has ϵ loss with respect to at least one of θ and θ'
 - If $\ell(\cdot, \cdot)$ is a distance function, then it suffices to make all pairwise distances in $\widetilde{\Theta}$ at least 2ϵ
 - 2. Prove upper-bound on $\text{RE}(P_{\theta}, P_{\theta'})$ for $\theta, \theta' \in \widetilde{\Theta}$. This typically requires understanding details of the data distribution.
- The two steps in the recipe seem to be conflicting, but really it just means that one needs to carefully balance the two concerns when choosing $\widetilde{\Theta}$

7.1 Covering and packing

- Let (T, ℓ) be a (pseudo)metric space
 - T is a set of points
 - $-\ell \colon T \times T \to \mathbb{R}_+$ is a symmetric function that satisfies $\ell(t,t) = 0$ for all $t \in T$ and $\ell(s,t) \le \ell(s,u) + \ell(u,t)$ for all $s,t,u \in T$ (triangle inequality)
- Say $C \subseteq T$ is an ϵ -cover of (T, ℓ) if for all $t \in T$, there exists $\tilde{t} \in C$ such that $\ell(t, \tilde{t}) \leq \epsilon$

- Balls of radius ϵ centered around all points in C will "cover" all of T
- Say $P \subseteq T$ is an ϵ -packing of (T, ℓ) if $\ell(s, t) > \epsilon$ for all distinct $s, t \in P$
- Let $\mathcal{N}(\epsilon, T, \ell)$ denote the size of the smallest ϵ -cover of (T, ℓ)
- Let $\mathcal{M}(\epsilon, T, \ell)$ denote the size of the largest ϵ -packing of (T, ℓ)
- If an ϵ -packing P is maximal (i.e., for all $t \in T \setminus P$, the set $P \cup \{t\}$ is not an ϵ -packing), then P is also an ϵ -cover
 - This is because if P weren't an ϵ -cover, then there is a point $t \in T$ not already in P that we could add to P, and still have an ϵ -packing
- This implies that $\mathcal{N}(\epsilon, T, \ell) \leq \mathcal{M}(\epsilon, T, \ell)$
- On the other hand, we have $\mathcal{M}(2\epsilon, T, \ell) \leq \mathcal{N}(\epsilon, T, \ell)$
 - Let C be an ϵ -cover with $|C| = \mathcal{N}(\epsilon, T, \ell)$
 - If |S| > |C|, then by Pigeonhole principle, there are two points $s, t \in S$ that are "covered" by the same point $\tilde{t} \in C$
 - So by triangle inequality, $\ell(s,t) \leq \ell(s,\tilde{t}) + \ell(\tilde{t},t) \leq 2\epsilon$
 - This means S is not a 2ϵ -packing
- Example: $\mathcal{N}(\epsilon, [0, 1]^d, \ell_{\infty}) \leq (1/\epsilon)^d$
 - Let $C = \{0, \epsilon, 2\epsilon, \dots, 1 \epsilon\}^d$, so $|C| = (1/\epsilon)^d$
 - This C is an ϵ -cover
- Example: $\mathcal{M}(\epsilon, B^d, \ell_2) \leq (1 + 2/\epsilon)^d$
 - Let P be an ϵ -packing of (B^d, ℓ_2)
 - Balls of radius $\epsilon/2$ centered around points in P are disjoint Let V_1 be the total volume of these balls:

$$V_1 = |P|(\epsilon/2)^d v_d$$

where v_d is the volume of B^d itself

– All of these balls are contained in a larger ball of radius $1 + \epsilon/2$ Let V_2 be the volume of this larger ball:

$$V_2 = (1 + \epsilon/2)^d v_d$$

 $-V_1 \leq V_2$, which implies

$$|P| \le (1 + 2/\epsilon)^d$$

- Example: $\mathcal{N}(\epsilon, B^d, \ell_2) \ge (1/\epsilon)^d$
 - If C is ϵ -cover of (B^d, ℓ_2) , then B^d is contained in the union of |C| balls of radius ϵ
 - By union bound, the latter has volume at most $|C|\epsilon^d \operatorname{vol}(B^d)$
 - Therefore $|C| \ge (1/\epsilon)^d$

7.2 Gaussian mean estimation in ℓ_2

- Consider Gaussian mean estimation problem in ℓ_2 :
 - $-P_{\mu} = \mathcal{N}(\mu, I_d)^{\otimes n} \text{ for } \mu \in \mathbb{R}^d$
 - Loss is ℓ_2 distance

$$\ell_2(\mu', \mu) = \|\mu' - \mu\|_2$$

- $\bullet \ \, \mbox{Let}\ \widetilde{\Theta}\ \mbox{be a finite set from}\ \mathbb{R}^d$
- Given an estimator $\hat{\mu} = \hat{\mu}(Z)$ of μ , construct $f: \mathcal{Z} \to \widetilde{\Theta}$ by

$$f(Z) = \underset{\mu \in \widetilde{\Theta}}{\operatorname{arg\,min}} \ \|\hat{\mu} - \mu\|_2$$

- Suppose $\widetilde{\Theta}$ is an ϵ -packing of (\mathbb{R}^d, ℓ_2) :
 - Suppose true parameter is $\mu \in \widetilde{\Theta}$
 - If $f(Z) \neq \mu$, then:

$$\epsilon < \ell_2(f(Z), \mu)
\leq \ell_2(f(Z), \hat{\mu}) + \ell_2(\hat{\mu}, \mu)
\leq 2\ell_2(\hat{\mu}, \mu),$$

which implies

$$\ell_2(\hat{\mu}, \mu) > \epsilon/2$$

- Hence

$$\mathbb{E}_{\mu} \, \ell_2(\hat{\mu}, \mu) \ge \frac{\epsilon}{2} \mathrm{Pr}_{\mu}[f(Z) \ne \mu]$$

- $RE(P_{\mu}, P_{\mu'}) = n RE(N(\mu, I_d), N(\mu', I_d)) = \frac{n}{2} \|\mu \mu'\|_2^2 = \frac{n}{2} \ell_2(\mu, \mu')^2$
- Balanced choice: choose $\widetilde{\Theta}$ to be ϵ -packing of $((2\epsilon)B^d,\ell_2)$ of cardinality 2^d
 - Every $\mu, \mu' \in (2\epsilon)B^d$ has $\ell_2(\mu, \mu') \le 4\epsilon$
 - So by "Generalized" Fano inequality, we get

$$\max_{\mu \in \widetilde{\Theta}} \Pr_{\mu}[f(Z) \neq \mu] \ge 1 - \frac{\frac{n}{2} (4\epsilon)^2 + \ln 2}{\ln 2^d} = 1 - \frac{8n\epsilon^2 + \ln 2}{d \ln 2}$$

which is at least 1/2 if $n \lesssim d/\epsilon^2$ and $d \gtrsim 1$

- In this case, we get

$$\max_{\mu \in \widetilde{\Theta}} \mathbb{E}_{\mu} \, \ell_2(\hat{\mu}, \mu) > \frac{\epsilon}{4}$$

7.3 Gaussian mean estimation in ℓ_{∞}

- Same as before, but now loss is ℓ_{∞} distance $\ell_{\infty}(\mu',\mu) = \|\mu' \mu\|_{\infty}$
- Let $\widetilde{\Theta} = \{\epsilon e_1, \dots, \epsilon e_d\}$, so it is an ϵ -packing of $(\mathbb{R}^d, \ell_{\infty})$ of cardinality d
- Every $\mu, \mu' \in \widetilde{\Theta}$ has $\ell_2(\mu, \mu') \leq \sqrt{2}\epsilon$, so by "Generalized" Fano inequality,

$$\max_{\mu \in \widetilde{\Theta}} \Pr_{\mu}[f(Z) \neq \mu] \ge 1 - \frac{\frac{n}{2}(\sqrt{2}\epsilon)^2 + \ln 2}{\ln d} = 1 - \frac{n\epsilon^2 + \ln 2}{\ln d}$$

which is at least 1/2 if $n \lesssim (\log d)/\epsilon^2$ and $d \gtrsim 1$

References

Eric V Slud. Distribution inequalities for the binomial law. *The Annals of Probability*, pages 404–412, 1977.

Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam: research papers in probability and statistics, pages 423–435. Springer, 1997.