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1 Learning/estimation problems

• Z is the dataset (e.g., an iid sample of n training examples); Z is the space of possible
datasets.

• Pθ is a probability distribution for Z, one per θ ∈ Θ (e.g., Pθ is distribution of n iid examples
where each example is drawn from pθ, a distribution over X × {−1, 1})

• f : Z → Θ is an estimator a.k.a. learning algorithm

• ℓ(θ̂, θ) ∈ R+ is a measure of how bad θ̂ is as an estimate of θ

• Risk of f under Pθ:
EZ∼Pθ

[ℓ(f(Z), θ)]

• Minimax risk
min
f

max
θ∈Θ

Eθ[ℓ(f(Z), θ)]

• Upper bound UB on minimax risk: design learning algorithm with worst-case risk ≤ UB

• Lower bound LB on minimax risk: prove that every learning algorithm has worst-case risk
≥ LB

1.1 Example: learning binary classifier

• Z is n training examples from X × {−1, 1}

• Pθ is a distribution where examples Z = (Xi, Yi)
n
i=1 are iid from a probability distribution pθ

over X × {−1, 1} indexed by θ ∈ Θ

– Let hθ ∈ H be hypothesis from hypothesis class H with smallest error rate under pθ

• f : Z → Θ is an estimator that “guesses” θ ∈ Θ

– Later, we’ll show that if you have a good learning algorithm A : Z → H, then you can
get a good estimator f : Z → Θ

• ℓ(θ̂, θ) = 1{errθ(hθ̂)− errθ(hθ) ≥ ε}

• “Risk” of θ̂ = f(Z):
Eθ[ℓ(θ̂, θ)] = Prθ[errθ(hθ̂)− errθ(hθ) ≥ ε]
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2 Le Cam’s “two-point” method

• Only two possible data distributions, P−1 and P+1

• You get data Z ∼ Pσ, and then make a guess of σ; what is the probability you guess σ
incorrectly?

• Lemma:

min
f

max
σ∈{−1,1}

PrZ∼Pσ [f(Z) ̸= σ] ≥ 1

2

∑
z∈Z

min{P−1(z), P+1(z)}

=
1

2
(1− ∥P−1 − P+1∥TV)

• Proof: Draw σ ∼ unif{−1, 1}, and then draw Z | σ ∼ Pσ.

– “Bayes (optimal) classifier” that minimizes Pr[f(Z) ̸= σ] is

f⋆(z) =

{
+1 if P+1(z) > P−1(z)

−1 if P+1(z) ≤ P−1(z)

– Therefore

Pr[f⋆(Z) ̸= σ] =
1

2
P−1[f

⋆(Z) = +1] +
1

2
P+1[f

⋆(Z) = −1]

=
1

2

∑
z:P+1(z)>P−1(z)

P−1(z) +
1

2

∑
z:P+1(z)≤P−1(z)

P+1(z)

=
1

2

∑
z∈Z

min{P−1(z), P+1(z)}

• Moreover,∑
z∈Z

min{P−1(z), P+1(z)} =
∑
z∈Z

(
P−1(z) + P+1(z)

2
− |P−1(z)− P+1(z)|

2

)
= 1− 1

2

∑
z∈Z

|P−1(z)− P+1(z)|

= 1− ∥P−1 − P+1∥TV

Therefore

min
f

max
σ∈{−1,1}

Prσ[f(Z) ̸= σ] ≥ 1

2
(1− ∥P−1 − P+1∥TV)

3 Using Le Cam’s method

• Suppose H has at least two hypotheses h−1 and h+1 that disagree on a point x0 ∈ X , with
hσ(x0) = σ for each σ ∈ {−1, 1}
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• Consider two data distributions P−1 and P+1 for iid examples (Xi, Yi)
n
i=1

– Under Pσ: Xi = x0 with probability 1, and

Yi =

{
+σ with probability 1+ε

2 ,

−σ with probability 1−ε
2 .

– So errσ(hσ) = 0.5− ε < 0.5 + ε = errσ(h−σ)

– We’ll show, using Le Cam’s method, that if n ≲ 1
ε2

log 1
δ , then

min
f

max
σ∈{−1,1}

Pσ[f(Z) ̸= σ] > δ

• Application to statistical learning:

– For arbitrary h, we have

errσ(h) =

{
1−ε
2 if h(x0) = +σ

1+ε
2 if h(x0) = −σ

– Given learning algorithm A : Z → H, define fA(Z) = A(Z)(x0)

– If A can guarantee
Pr[err(A(Z))−min

h∈H
err(h) ≥ ε] ≤ δ,

then
max

σ∈{−1,1}
Pσ[fA(Z) ̸= σ] ≤ δ.

– Therefore, no algorithm A can guarantee

Pr[err(A(Z))−min
h∈H

err(h) ≥ ε] ≤ δ

if

n ≲
1

ε2
log

1

δ
.

• Now let us prove the minimax lower bound

– Given dataset z = (xi, yi)
n
i=1, let m(z) = |{i ∈ [n] : yi = +1}|

– Then

P+1(z) =

(
1 + ε

2

)m(z)(1− ε

2

)n−m(z)

,

P−1(z) =

(
1− ε

2

)m(z)(1 + ε

2

)n−m(z)

.

So

P+1(z)

P−1(z)
≥ 1 ⇔

(
1 + ε

2

)2m(z)−n(1− ε

2

)n−2m(z)

≥ 1

⇔
(
1 + ε

1− ε

)2m(z)−n

≥ 1

⇔ m(z) ≥ n/2
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– So by Le Cam’s lemma

min
f

max
σ∈{−1,1}

Pσ[f(Z) ̸= σ] ≥ 1

2

∑
z∈Z

min{P−1(z), P+1(z)}

=
1

2

 ∑
z∈Z:m(z)≥n/2

P−1(z) +
∑

z∈Z:m(z)<n/2

P+1(z)


=

1

2
(P−1(m(Z) ≥ n/2) + P+1(m(Z) < n/2))

– By Slud’s inequality (Slud, 1977),

P−1(m(Z) ≥ n/2) ≥ 1− Φ

(
nε/2√

n(1− ε2)/4

)

and

P+1(m(Z) < n/2) ≥ 1− Φ

(
nε/2√

n(1− ε2)/4

)
where Φ is the CDF for N(0, 1)

– Conclusion: if n ≲ 1
ε2

log 1
δ , then

min
f

max
σ∈{−1,1}

Pσ[f(Z) ̸= σ] > δ

• Difficulty distilled to testing problem between two possible distributions

• What about dependence on “complexity” of H? Need to consider testing problem with many
possible distributions (not just two)

• Two typical approaches: Assouad’s method, Fano’s method

• Nice reference for statistics applications: Yu (1997)

4 Assouad’s “hypercube” method

• Suppose there are 2d distributions Pσ on Z, one per σ ∈ {−1, 1}d

• Consider Hamming loss ℓ(σ̂, σ) =
∑d

j=1 1{σ̂j ̸= σj}

• Define σ⊕j to be the vector in {−1, 1}d that differs from σ in only the j-th position

• Assouad’s Lemma:

min
f

max
σ∈{−1,1}d

Eσ[ℓ(f(Z), σ)] ≥ d

2
− 1

2

d∑
j=1

max
σ∈{−1,1}d

∥Pσ − Pσ⊕j∥TV
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• Proof: Define the mixture distributions

M+j =
1

2d−1

∑
σ∈{−1,1}d:σj=+1

Pσ

M−j =
1

2d−1

∑
σ∈{−1,1}d:σj=−1

Pσ

– First we bound ∥M+j −M−j∥TV:

∥M+j −M−j∥TV =

∥∥∥∥∥∥ 1

2d−1

∑
σ∈{−1,1}d:σj=+1

Pσ − 1

2d−1

∑
σ∈{−1,1}d:σj=−1

Pσ

∥∥∥∥∥∥
TV

=
1

2d−1

∥∥∥∥∥∥
∑

σ∈{−1,1}d:σj=+1

(Pσ − Pσ⊕j )

∥∥∥∥∥∥
TV

≤ 1

2d−1

∑
σ∈{−1,1}d:σj=+1

∥Pσ − Pσ⊕j∥TV

≤ max
σ∈{−1,1}d

∥Pσ − Pσ⊕j∥TV

– Next, just like in the proof of Le Cam’s lemma, we consider σ ∼ unif{−1, 1}d and
Z | σ ∼ Pσ. For an estimator f , let σ̂ = f(Z):

E ℓ(σ̂, σ) =

d∑
j=1

Pr[σ̂j ̸= σj ]

– Now observe that Pr[σ̂j ̸= σj ] is the expected zero-one loss of an estimator f that just
has to guess σj based on Z, where the two possible distributions are M+j and M−j

– By Le Cam’s lemma and our first step,

Pr[σ̂j ̸= σj ] ≥
1

2
(1− ∥M+j −M−j∥TV)

≥ 1

2

(
1− max

σ∈{−1,1}d
∥Pσ − Pσ⊕j∥TV

)
Plugging back into the previous displayed equation gives the claim.

5 Using Assouad’s method

• Let H have VC dim d, and let S = {s1, . . . , sd} be shattered by H

• Define distribution Pσ for data Z = (Xi, Yi)
d
i=1

– Under Pσ: Xi = sj with probability 1/d; and given Xi = sj ,

Yi =

{
+σj with probability 1+ε

2 ,

−σj with probability 1−ε
2 .
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– Let hσ ∈ H be a hypothesis satisfying hσ(sj) = σj for all j ∈ [d] (existence of hσ is
guaranteed since S is shattered by H)

– Note that minh∈H errσ(h) = errσ(hσ) =
1−ε
2

• For any h,

errσ(h) =
1− ε

2
+

ε

2

d∑
j=1

1{h(sj) ̸= σj}

= errσ(hσ) +
ε

2

d∑
j=1

1{h(sj) ̸= σj}

• Suppose there is a learning algorithm A that can guarantee

E[err(A(Z))−min
h∈H

err(h)] ≤ ε

4

• Define fA : Z → {−1, 1}d by
fA(Z) = (h(s1), . . . , h(sd))

where h = A(Z)

• This fA satisfies

Eσ[ℓ(fA(Z), σ)] ≤ 1

2

for all σ ∈ {−1, 1}d

• By Assouad’s lemma,

max
σ∈{−1,1}d

Eσ[ℓ(fA(Z), σ)] ≥ d

2
− 1

2

d∑
j=1

max
σ∈{−1,1}d

∥Pσ − Pσ⊕j∥TV

• Therefore it must be that

d∑
j=1

max
σ∈{−1,1}d

∥Pσ − Pσ⊕j∥TV ≥ d− 1 (1)

• Pinsker’s inequality:

∥P −Q∥TV ≤
√

1

2
RE(P,Q)

Recall

RE(P,Q) =
∑
z∈Z

P (z) ln
P (z)

Q(z)

• Let pσ be the marginal distribution of (X1, Y1) under Pσ; since examples from Pσ are iid, we
have

RE(Pσ, Pσ⊕j ) = n · RE(pσ, pσ⊕j ) (2)
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• Note that pσ and pσ⊕j differ only in the probabilities assigned to (sj , σj) and (sj ,−σj)

• Therefore

RE(pσ, pσ⊕j ) = pσ(sj , σj) ln
pσ(sj , σj)

pσ⊕j (sj , σj)
+ pσ(sj ,−σj) ln

pσ(sj ,−σj)

pσ⊕j (sj ,−σj)

=
1

d
· 1 + ε

2
ln

1
d · 1+ε

2
1
d · 1−ε

2

+
1

d
· 1− ε

2
ln

1
d · 1−ε

2
1
d · 1+ε

2

=
1

d
· 1 + ε

2
ln

1 + ε

1− ε
+

1

d
· 1− ε

2
ln

1− ε

1 + ε

=
ε

d
ln

1 + ε

1− ε

• Plugging back into (2),

RE(Pσ, Pσ⊕j ) =
nε

d
ln

1 + ε

1− ε
≈ 2nε2

d

• Using Pinsker’s, we get

d∑
j=1

max
σ∈{−1,1}d

∥Pσ − Pσ⊕j∥TV ≲
d∑

j=1

√
nε2

d
=

√
dnε2.

• Combining with (1),

n ≥ d− 1

ε2
·
(
1− 1

d

)
.

6 Fano’s mutual information method

• Assouad’s method is useful if you have:

– “separable” loss function (sum over coordinates), and

– “hypercube” structure of difficult testing problems

• General method: Fano’s (mutual information) method

• Mutual information between X and Y :

I(X;Y ) = RE(PX,Y , PX ⊗ PY ) (i.e., it is symmetric w.r.t. X and Y )

= H(Y )−H(Y | X)

= H(X)−H(X | Y )

where
H(Y | X) =

∑
x∈X

PX(x)H(Y | X = x) (conditional entropy)

• Joint entropy:

H(X,Y ) = H(X) +H(Y | X)

= H(Y ) +H(X | Y )
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• Fano’s inequality:

– Consider a “prior” distribution π on Θ, and θ ∼ π.

– Given θ, we draw data Z ∼ Pθ.

– Guess of θ is θ̂(Z).

– If pe is probability of guessing θ incorrectly, then

pe ≥ 1− I(θ;Z) + ln 2

H(θ)
.

• Proof:

– Communication scenario: Alice is given (θ, Z), but Bob is only given Z. What should
Alice tell Bob so that he also knows θ?

– Consider the following communication strategy for Alice:

1. Compute estimator θ̂(Z)

2. If θ̂(Z) = θ, then send 0

3. Else, send (1, θ)

– If this scenario is repeated independently many times, then average message length is

≤ 1 + peH(θ)

– Bob now has (θ, Z)! So he received ≥ H(θ, Z) bits from Nature + Alice

– Bob got H(Z) bits from Nature, so needed ≥ H(θ | Z) bits of information from Alice

– Therefore
H(θ | Z) ≤ 1 + peH(θ)

which rearranges to

pe ≥
H(θ | Z)− 1

H(θ)
=

H(θ)− I(θ, Z)− 1

H(θ)
= 1− I(θ, Z) + 1

H(θ)
.

(Can improve the +1 to + ln 2 using more precise calculations. . . )

• Also useful: I(θ, Z) = minQRE(PZ|θ, Q | θ) (whenever PZ|θ/Q is valid)

– Proof:

I(θ, Z) = E
[
ln

PZ|θ

PZ

]
= E

[
ln

PZ|θ

Q
− ln

PZ

Q

]
= E

[
ln

PZ|θ

Q

]
− E

[
ln

PZ

Q

]
= RE(PZ|θ, Q | θ)− RE(PZ , Q).
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• Pick Q in a strategic way to make it easy to upper-bound RE(PZ|θ, Q | θ)

• Suppose π is uniform on {θ1, . . . , θN} ⊂ Θ, and

Q =
1

N

N∑
j=1

PZ|θ=θj ,

then by Jensen’s inequality and convexity of RE in second argument,

RE

PZ|θ,
1

N

N∑
j=1

PZ|θ=θj | θ

 ≤ 1

N

N∑
j=1

RE(PZ|θ, PZ|θ=θj | θ)

=
1

N2

N∑
i=1

N∑
j=1

RE(PZ|θ=θi , PZ|θ=θj )

≤ max
i,j

RE(PZ|θ=θi , PZ|θ=θj )

= max
i,j

RE(Pθi , Pθj )

• Han and Verdú’s “generalized” Fano inequality: Let Θ̃ = {θ1, . . . , θN}. Then

pe ≥ 1−
maxi,j RE(Pθi , Pθj ) + ln 2

lnN

7 Using Fano’s mutual information method

• Recipe to use the “generalized” Fano inequality:

1. Find Θ̃ ⊂ Θ such that for every distinct pair θ, θ′ ∈ Θ̃, every estimator θ̂ has ϵ loss with
respect to at least one of θ and θ′

– If ℓ(·, ·) is a distance function, then it suffices to make all pairwise distances in Θ̃ at
least 2ϵ

2. Prove upper-bound on RE(Pθ, Pθ′) for θ, θ
′ ∈ Θ̃.

This typically requires understanding details of the data distribution.

• The two steps in the recipe seem to be conflicting, but really it just means that one needs to
carefully balance the two concerns when choosing Θ̃

7.1 Covering and packing

• Let (T, ℓ) be a (pseudo)metric space

– T is a set of points

– ℓ : T × T → R+ is a symmetric function that satisfies ℓ(t, t) = 0 for all t ∈ T and
ℓ(s, t) ≤ ℓ(s, u) + ℓ(u, t) for all s, t, u ∈ T (triangle inequality)

• Say C ⊆ T is an ϵ-cover of (T, ℓ) if for all t ∈ T , there exists t̃ ∈ C such that ℓ(t, t̃) ≤ ϵ
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– Balls of radius ϵ centered around all points in C will “cover” all of T

• Say P ⊆ T is an ϵ-packing of (T, ℓ) if ℓ(s, t) > ϵ for all distinct s, t ∈ P

• Let N (ϵ, T, ℓ) denote the size of the smallest ϵ-cover of (T, ℓ)

• Let M(ϵ, T, ℓ) denote the size of the largest ϵ-packing of (T, ℓ)

• If an ϵ-packing P is maximal (i.e., for all t ∈ T \P , the set P ∪ {t} is not an ϵ-packing), then
P is also an ϵ-cover

– This is because if P weren’t an ϵ-cover, then there is a point t ∈ T not already in P that
we could add to P , and still have an ϵ-packing

• This implies that N (ϵ, T, ℓ) ≤ M(ϵ, T, ℓ)

• On the other hand, we have M(2ϵ, T, ℓ) ≤ N (ϵ, T, ℓ)

– Let C be an ϵ-cover with |C| = N (ϵ, T, ℓ)

– If |S| > |C|, then by Pigeonhole principle, there are two points s, t ∈ S that are “covered”
by the same point t̃ ∈ C

– So by triangle inequality, ℓ(s, t) ≤ ℓ(s, t̃) + ℓ(t̃, t) ≤ 2ϵ

– This means S is not a 2ϵ-packing

• Example: N (ϵ, [0, 1]d, ℓ∞) ≤ (1/ϵ)d

– Let C = {0, ϵ, 2ϵ, . . . , 1− ϵ}d, so |C| = (1/ϵ)d

– This C is an ϵ-cover

• Example: M(ϵ, Bd, ℓ2) ≤ (1 + 2/ϵ)d

– Let P be an ϵ-packing of (Bd, ℓ2)

– Balls of radius ϵ/2 centered around points in P are disjoint

Let V1 be the total volume of these balls:

V1 = |P |(ϵ/2)dvd
where vd is the volume of Bd itself

– All of these balls are contained in a larger ball of radius 1 + ϵ/2

Let V2 be the volume of this larger ball:

V2 = (1 + ϵ/2)dvd

– V1 ≤ V2, which implies
|P | ≤ (1 + 2/ϵ)d

• Example: N (ϵ, Bd, ℓ2) ≥ (1/ϵ)d

– If C is ϵ-cover of (Bd, ℓ2), then Bd is contained in the union of |C| balls of radius ϵ
– By union bound, the latter has volume at most |C|ϵd vol(Bd)

– Therefore |C| ≥ (1/ϵ)d

10



7.2 Gaussian mean estimation in ℓ2

• Consider Gaussian mean estimation problem in ℓ2:

– Pµ = N(µ, Id)
⊗n for µ ∈ Rd

– Loss is ℓ2 distance
ℓ2(µ

′, µ) = ∥µ′ − µ∥2

• Let Θ̃ be a finite set from Rd

• Given an estimator µ̂ = µ̂(Z) of µ, construct f : Z → Θ̃ by

f(Z) = argmin
µ∈Θ̃

∥µ̂− µ∥2

• Suppose Θ̃ is an ϵ-packing of (Rd, ℓ2):

– Suppose true parameter is µ ∈ Θ̃

– If f(Z) ̸= µ, then:

ϵ < ℓ2(f(Z), µ)

≤ ℓ2(f(Z), µ̂) + ℓ2(µ̂, µ)

≤ 2ℓ2(µ̂, µ),

which implies
ℓ2(µ̂, µ) > ϵ/2

– Hence
Eµ ℓ2(µ̂, µ) ≥

ϵ

2
Prµ[f(Z) ̸= µ]

• RE(Pµ, Pµ′) = nRE(N(µ, Id),N(µ
′, Id)) =

n
2 ∥µ− µ′∥22 = n

2 ℓ2(µ, µ
′)2

• Balanced choice: choose Θ̃ to be ϵ-packing of ((2ϵ)Bd, ℓ2) of cardinality 2d

– Every µ, µ′ ∈ (2ϵ)Bd has ℓ2(µ, µ
′) ≤ 4ϵ

– So by “Generalized” Fano inequality, we get

max
µ∈Θ̃

Prµ[f(Z) ̸= µ] ≥ 1−
n
2 (4ϵ)

2 + ln 2

ln 2d
= 1− 8nϵ2 + ln 2

d ln 2

which is at least 1/2 if n ≲ d/ϵ2 and d ≳ 1

– In this case, we get

max
µ∈Θ̃

Eµ ℓ2(µ̂, µ) >
ϵ

4
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7.3 Gaussian mean estimation in ℓ∞

• Same as before, but now loss is ℓ∞ distance ℓ∞(µ′, µ) = ∥µ′ − µ∥∞

• Let Θ̃ = {ϵe1, . . . , ϵed}, so it is an ϵ-packing of (Rd, ℓ∞) of cardinality d

• Every µ, µ′ ∈ Θ̃ has ℓ2(µ, µ
′) ≤

√
2ϵ, so by “Generalized” Fano inequality,

max
µ∈Θ̃

Prµ[f(Z) ̸= µ] ≥ 1−
n
2 (
√
2ϵ)2 + ln 2

ln d
= 1− nϵ2 + ln 2

ln d

which is at least 1/2 if n ≲ (log d)/ϵ2 and d ≳ 1
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