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1 Using expert advice

Imagine you are conscripted to be the weatherperson for the morning news. This means that, every
day, you must predict a {0, 1}-valued outcome: say, rain or shine. This is now your day job, so you
want to do well, i.e., make correct predictions as often as possible. You can determine whether or
not your prediction was correct by the end of the day (having gazed out the window all day . . . ).

Of course, you know nothing about meteorology, so you have no idea how to make a good
prediction on your own. But fortunately, you can consult your “expert” friends for advice at the
start of each day. Each of these N experts makes their own {0, 1}-valued prediction, and these
predictions are available to you before you have to make your own prediction.

Because you are paranoid about doing well, you would like a prediction strategy under the
assumption that Nature is adversarial. That is, you assume that Nature controls the weather as
well as the experts, and also that Nature is out to make you look as foolish as possible. What
strategy can you employ?

Without any further assumptions, there is nothing you can do. The adversarial Nature will just
look at your prediction and just make the opposite happen. So you make a mistake every day.

2 Realizability

To make some progress, let’s assume that Nature is constrained in how the outcomes and experts
are controlled so that there is an expert who always makes correct predictions. This is called the
realizability assumption for this problem.

A first algorithm to consider is CONSISTENT:

• Initialize V to be the list of all N experts, ordered however you like.

• Each day, predict the same as the first expert in V .

• At the end of each day, eliminate from V all experts who made incorrect predictions.

Proposition 1. If the realizability assumption holds, then CONSISTENT makes at most N − 1
mistakes.

Proof. Every time you make a mistake, you eliminate at least one expert. But under the realizability
assumption, there is an expert who will never be eliminated. You can therefore only eliminate at
most N − 1 experts.
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Not too shabby, but it turns out that you can do a lot better. Consider the following algorithm,
called HALVING:

• This is the same as CONSISTENT, except that each day, you predict the same as the majority
of the experts in V .

Proposition 2. If the realizability assumption holds, then HALVING makes at most log2N mis-
takes.

Proof. Every time you make a mistake, you eliminate at least half of the remaining experts. Just
as in the proof of Proposition 1, under the realizability assumption, there is one expert who will
never be eliminated. You can only halve the number of experts log2N times before you are left
with just one expert.

3 Non-realizability

Perhaps it is too much to hope for a perfect expert; Nature may not be so kind. But perhaps it is
possible to do something even if all experts may make mistakes, as long as some expert does not
make too many mistakes. Unfortunately, both CONSISTENT and HALVING may both get stuck
without the realizability assumption, because they may end up eliminating all experts.

A simple fix is to simply “resurrect” all of the experts if they are ever all eliminated. That is,
simply put all experts back into V . Call this algorithm HALVING++:

• Same as HALVING, except that if V is ever empty at the end of the day, then put all experts
back into V .

Proposition 3. For any t and K, if there is an expert who makes at most K mistakes after t days,
then HALVING++ makes at most (K + 1) log2N mistakes after t days.

Proof. Suppose expert i makes at most K mistakes after t days. If all experts have been eliminated
(and must be “resurrected”), then all experts—including expert i—must have made at least 1
mistake since the last “resurrection” (or the initial day). This means that you will only have to
“resurrect” all experts at most K times after t days. Before/after “resurrections”, you may make at
most log2N mistakes since every mistake you incur corresponds to halving the number of experts
in V (same argument as in the proof of Proposition 2).

A more sophisticated algorithm, called WEIGHTEDMAJORITY gets a “square-root” improve-
ment over HALVING++. (It roughly improves from the product of K and logN to the sum.)

Theorem 1 (Littlestone and Warmuth, 1994). For any t and K, if there is an expert who makes
at most K mistakes after t days, then WEIGHTED MAJORITY makes at most 2.41(K + log2N)
mistakes after t days.

A fine-tuned version of WEIGHTED MAJORITY guarantees a bound of at most

2K +O
(√

K logN + logN
)

mistakes after t days as long as there is an expert who makes at most K mistakes after t days.
Thinking of K as a quantity that grows over time (i.e., K → ∞), this bound is

(2 + o(1))K.
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Before presenting WEIGHTED MAJORITY, consider the following question: could you hope
to ensure a bound of (1 + o(1))K mistakes? If so, then you would “asymptotically” (as K → ∞)
perform nearly as well as the best expert, no matter how many mistakes the best expert makes.
You would never look (much) more foolish than an expert!

Sadly, the answer to this question is no. Consider the following scenario due to Cover (1965).

• There are N = 2 experts: Expert 0 and Expert 1.

– Expert 0 always predicts 0.

– Expert 1 always predicts 1.

• Nature always sets the outcome to be the opposite of your prediction.

In this scenario, you make a mistake every day. However, after t days, at least one of Expert 0 and
Expert 1 has made at most t/2 mistakes. So for t = 2K, you will have made 2K mistakes even
though there is an expert who makes at most K mistakes.

4 Weighted majority

Let us introduce some notation and formalize the problem we’ve been considering. For round
t = 1, 2, . . . :

• The learner (you) observes the predictions bt,1, . . . , bt,N ∈ {−1, 1} of the N experts.

• The learner must then make a prediction at ∈ {−1, 1}.

• Nature then reveals the outcome yt ∈ {−1, 1}.

The total number of mistakes of the learner after t rounds is

t∑
s=1

1{as ̸= ys}.

(Here we have switched from {0, 1} to {−1, 1} for notational reasons that will become clear later.)
The basic version of WEIGHTED MAJORITY is the following algorithm, due to Littlestone

and Warmuth (1994).

• Initially, set w1,i := 1 for all i ∈ [N ] := {1, 2, . . . , N}. This is the “weight” of expert i.

• In round t:

– Observe the experts’ predictions bt,1, . . . , bt,N ∈ {−1, 1}.

– Predict at = sign
(∑N

i=1wt,ibt,i

)
∈ {−1, 1}.

– Observe the outcome yt ∈ {−1, 1}.
– Update experts’ weights: for each i ∈ [N ],

wt+1,i =

{
wt,i if yt = bt,i,
1
2wt,i if yt ̸= bt,i.
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Here, the sign(·) function maps negative numbers to −1 and positive numbers to 1. To break
ties, let’s say sign(0) = −1. (This choice won’t really matter in the analysis of WEIGHTED
MAJORITY.)

We can think of the weight of an expert as a measure of its reliability. We consider all experts
to be equally reliable at the start. And experts who make a mistake have their reliability score
reduced (halved).

We already gave the guarantee for WEIGHTED MAJORITY in Theorem 1. The idea behind
the proof is similar to the analyses of CONSISTENT and HALVING. Every time the learner makes
a mistake, we should be able to account for it in some way. With CONSISTENT and HALVING,
we account for mistakes in terms of the number of experts eliminated; the difference between
CONSISTENT and HALVING is how many experts are eliminated per mistake. In WEIGHTED
MAJORITY, a mistake implies that half of the total weight of experts corresponds to experts’ who
were mistaken. So the proof of Theorem 1 will track the total weight of experts as it evolves over
time. (We regard the total weight of experts as a “potential function”.)

Proof of Theorem 1. For any round t, define

Zt =

N∑
i=1

wt,i

to be the total weight of experts at the start of round t, so Z1 = N .
Suppose WEIGHTED MAJORITY makes a mistake in round t. Let αt be the fraction (or

proportion) of the total weight of experts that were mistaken. The weight of these experts are
halved in the update; the weight of the remaining experts are unchanged. We know αt ≥ 1/2 by
the way WEIGHTED MAJORITY chooses its (mistaken) prediction. Therefore

Zt+1 = (1− αt)Zt +
1

2
αtZt

= Zt −
1

2
αtZt

≤ Zt −
1

4
Zt (since αt ≥ 1/2)

=
3

4
Zt.

Therefore, by induction, if WEIGHTED MAJORITY makes M mistakes after t rounds, then

Zt+1 ≤
(
3

4

)M

Z1 =

(
3

4

)M

N.

The weight wt+1,i of expert i at the start of round t+1 is determined by the number of mistakes
expert i has made after t rounds: if expert i has made Mi mistakes, then wt+1,i = 2−Mi . Therefore,
if there is an expert who has made at most K mistakes after t rounds, then

Zt+1 ≥ 2−K .

We now have upper- and lower-bounds on Zt+1, so we can combine the bounds

2−K ≤ Zt+1 ≤
(
3

4

)M

N

and rearrange to get M ≤ (K + log2N)/ log2(4/3).
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We can “fine-tune” the WEIGHTED MAJORITY algorithm to get a better guarantee. Instead
of multiplying the weight of mistaken experts by 1/2, we change the update to multiplication by β,
for some “hyperparameter” β ∈ [0, 1]. Of course, β = 0 corresponds to the HALVING algorithm:
mistaken experts have their weight zeroed out. And β = 1 does not change the weights at all.

Working through the same analysis as in the proof of Theorem 1, but now using β in place of
the 1/2, we obtain the following.

Theorem 2 (Littlestone and Warmuth, 1994). For any t and K, if there is an expert who makes
at most K mistakes after t days, then WEIGHTED MAJORITY (with hyperparameter β ∈ (0, 1))
makes at most

K log(1/β) + logN

log(2/(1 + β))
. (1)

mistakes after t days.

(The base of the logarithm clearly does not matter in (1), but to make it concrete, let’s always
assume log uses base e.)

Here is what the “mistake bound” in (1) looks like for different values of β.

β Equation (1)

1/2 ≈ 2.41K + 3.48 logN
2/3 ≈ 2.22K + 5.48 logN
3/4 ≈ 2.15K + 7.49 logN
4/5 ≈ 2.12K + 9.49 logN

The limit of the pre-factor on K is 2 as β → 1 (as can be checked by L’Hôpital’s rule). But the
pre-factor on logN diverges to +∞ as β → 1.

If we re-parameterize β using β = 1 − δ for δ ∈ (0, 1), then we can use a Taylor expansion
to understand (1) as a function of δ, at least for δ close to zero. Concretely, there is an absolute
constant C > 0 such that, if δ ∈ (0, 1/C), then

K log(1/(1− δ)) + logN

log(2/(2− δ))
≤ (2 + δ)K +

2

δ
logN = 2K + δK +

2 logN

δ
.

To “balance” the last two terms, assuming K > 2C2 logN , we can set

δ =

√
2 logN

K

so that

δK +
2 logN

δ
= 2

√
2K logN.

On the other hand, if K < 2C2 logN , then setting δ = 1/(C + 1) (for example) gives

δK +
2 logN

δ
≤ C ′ logN

for some other absolute constant C ′ > 0 (that depends only on C). So either way, with this “fine-
tuned” choice of δ (or, equivalently, of β), we ensure that WEIGHTED MAJORITY makes at
most

2K +O
(√

K logN + logN
)

mistakes after t rounds, as long as there is an expert who makes at most K mistakes after t rounds.
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