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1 Weak learning versus strong learning

The problem of boosting originated in the context of PAC learning. A concept class C ⊆ {−1, 1}X
is (strongly) PAC learnable if there is a learning algorithm with the following property. For any
c ∈ C, any ϵ, δ ∈ (0, 1), and any data distribution P with labels generated by c, the learner returns
an ϵ-approximation of c ∈ C with probability at least 1 − δ. Such a learning algorithm is called a
strong PAC learner. (Of course, the sample and time complexity should be polynomial in 1/ϵ, 1/δ,
dim(X ), size(c), etc.)

A weak PAC learner is much like a strong learner, except that it might only work for certain
non-trivial values of ϵ and δ, say, ϵ ≥ ϵ0 and δ ≥ δ0. By non-trivial, we mean that ϵ0 is non-trivially
bounded away from 1/2, and δ0 is non-trivially bounded away from 1. If there is a weak learner
for C, then we say C is weakly PAC learnable.

Is weak PAC learnability equivalent to strong PAC learnability? This question was asked by
Kearns and Valiant (1989), and answered affirmatively by Schapire (1990). Schapire proved the
equivalence by designing a boosting algorithm: an algorithmic reduction from strong learning to
weak learning. The boosting algorithm achieves the strong learning guarantee for a concept class C
by using repeatedly invoking a weak learner for C as a subroutine. After Schapire’s original proof
was found, several other boosting algorithms have been developed, with the AdaBoost algorithm
of Freund and Schapire (1997) probably being the most famous.

The key idea in boosting algorithms is to exploit the requirement that weak learners succeed
under any marginal distribution over X . All boosting algorithms work by invoking the weak learner
under different distributions, and then use (or combine) the outputs of the weak learners (called
“weak hypotheses”) in some way.

2 In-sample weak learning

It is a little simpler to thinking about weak versus strong learning in the context of a fixed training
dataset—i.e., “in-sample”—and then worry later about how to get “out-of-sample” results.

So let (x1, y1), . . . , (xn, yn) be a training dataset from X × {−1, 1}. A weak learner for this
dataset is an algorithm that, given any (re-)weighting p = (p1, . . . , pn) ∈ ∆n−1 of the training
examples, returns a hypothesis h : X → {−1, 1} with non-trivial p-weighted (empirical) accuracy :

accn(h; p) :=
n∑

i=1

pi · 1{h(xi) = yi} ≥ 1 + γ

2
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for some γ > 0. The number γ is called the advantage of h over random guessing (with respect to
the re-weighting p). Here, (1+γ)/2 corresponds to what we previously called 1−ϵ0. The assumption
that there is a weak learner for the dataset is called the weak learning assumption (WLA).

There is another way to think about the WLA. Consider all possible hypotheses that the weak
learner could output, and call this set H. For simplicity, assume H is finite, say, H = {h1, . . . , hd}.
Define matrix A ∈ Rn×d by

Ai,j := 1{hj(xi) = yi}.

The WLA says that for any p ∈ ∆n−1, there is some j ∈ [d] such that

pTAej ≥
1 + γ

2
,

where ej is the j-th elementary basis vector. In other words,

min
p∈∆n−1

max
q∈{e1,...,ed}

pTAq ≥ 1 + γ

2
. (1)

Since linear functions over the probability simplex ∆d−1 are extremized at the vertices of the
simplex, (1) is equivalent to

min
p∈∆n−1

max
q∈∆d−1

pTAq ≥ 1 + γ

2
. (2)

By the Von Neumann Min-Max Theorem,

min
p∈∆n−1

min
q∈∆d−1

pTAq = max
q∈∆d−1

min
p∈∆n−1

pTAq, (3)

so (1) (or (2)) is equivalent to

max
q∈∆d−1

min
p∈∆n−1

pTAq ≥ 1 + γ

2
. (4)

Again, since linear functions over ∆n−1 are extremized at the vertices, (4) is equivalent to

max
q∈∆d−1

min
i∈[n]

eTiAq ≥ 1 + γ

2
. (5)

This means that there exists some q = (q1, . . . , qd) ∈ ∆d−1 such that, for all i ∈ [n],

d∑
j=1

qj 1{hj(xi) = yi} =
d∑

j=1

qj
1 + yihj(xi)

2

=
1 + yi

∑d
j=1 qjhj(xi)

2

≥ 1 + γ

2
,

which implies that

sign

 d∑
j=1

qjhj(xi)

 = yi for all i ∈ [n].

So, in the “feature space” where the feature vector for x ∈ X is (h1(x), . . . , hd(x)), the WLA is
equivalent to linearly separability of the dataset.
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3 In-sample boosting

Since WLA is equivalent to linear separability, a strong (in-sample) learner can be implemented
by finding a linear separator for a given dataset. Finding linear separators is equivalent to solving
linear programs, which can be done in polynomial time. The final hypothesis might not be just one
of the hypotheses in H; rather, it would generally be a linear classifier built on top of hypotheses
from H.

There are two main problems with this approach: one computational, the other statistical.

• It is unclear how to enumerate all of the hypotheses that a weak learner might output; this
makes it difficult to use standard linear programming algorithms to find a linear separator.

• The class of linear classifiers in a d-dimensional feature space has VC dimension d. So the sam-
ple complexity might be linear in d, which is exponentially worse than the sample complexity
needed to learn H, which only grows logarithmically in d.

Both of these problems are even worse if H is infinite. So this equivalence to linear separability
might not seem so useful after all, except perhaps as a conceptual device.

Fortunately, the Von Neumann Min-Max Theorem (3) has an algorithmic proof due to Freund
and Schapire that is based on executing the Hedge algorithm in a particular instance of the Online
Allocation problem. From the execution of Hedge in this context, there is a way to obtain (in the
terminology of (3)) p ∈ ∆n−1 and q ∈ ∆d−1 that approximately achieve the optimal value in (3).

The following boosting algorithm is derived from this line of reasoning.

• Input: training examples (x1, y1), . . . , (xn, yn) ∈ X × {−1, 1}; hyperparameters η > 0, T > 0.

• Initially, set p1 := (1/n, . . . , 1/n) ∈ ∆n−1.

• For t = 1, 2, . . . , T :

– Invoke the weak learner with weighting pt := (pt,1, . . . , pt,n) ∈ ∆n−1 on dataset ((xi, yi))
n
i=1

to obtain hypothesis ht : X → {−1, 1}.
– Define loss vector ℓt = (ℓt,1, . . . , ℓt,n) ∈ {0, 1}n by

ℓt,i := 1{ht(xi) = yi}.

– Compute new weighting pt+1 := (pt+1,1, . . . , pt+1,n) ∈ ∆n−1:

pt+1,i :=
pt,i exp(−ηℓt,i)

Zt+1
for all i ∈ [n],

where

Zt+1 :=
n∑

i=1

pt,i exp(−ηℓt,i).

• Return: final hypothesis ĥ(x) = sign(g(x)) where g(x) = 1
T

∑T
t=1 ht(x).
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The weightings pt are computed as in Hedge, with loss vectors ℓt determined by the hypotheses
ht returned by the weak learner. The main theorem for Hedge implies the following: for any
u ∈ ∆n−1,

1

T

T∑
t=1

⟨pt, ℓt⟩ ≤
1

T

T∑
t=1

⟨u, ℓt⟩+
lnn

ηT
+

η

2
. (6)

Let us interpret the inequality in (6). First, the left-hand side satisfies

1

T

T∑
t=1

⟨pt, ℓt⟩ =
1

T

T∑
t=1

(
n∑

i=1

pt,i 1{ht(xi) = yi}

)

=
1

T

T∑
t=1

accn(ht; pt)

≥ 1 + γ

2

where the inequality follows from the WLA. Now suppose u = ei for some i ∈ [n]. Then

1

T

T∑
t=1

⟨ei, ℓt⟩ =
1

T

T∑
t=1

1{ht(xi) = yi}

=
1

T

T∑
t=1

1 + yiht(xi)

2

=
1 + yig(xi)

2
.

Therefore, via (6), we have

1 + yig(xi)

2
≥ 1 + γ

2
− lnn

ηT
− η

2
for all i ∈ [n].

This is equivalent to

yig(xi) ≥ γ − 2 lnn

ηT
− η for all i ∈ [n].

If we choose η = γ/2 and T > (8 lnn)/γ2 (say), then we have yig(xi) > 0 for all i ∈ [n]. In
particular, x 7→ sign(g(x)) classifies all training examples correctly.

Alternative analysis. Recall that the main guarantee for Hedge can also be written in terms of
the relative entropy of an arbitrary comparator u ∈ ∆n−1 from p1:

1

T

T∑
t=1

⟨pt, ℓt⟩ ≤
1

T

T∑
t=1

⟨u, ℓt⟩+
RE(u, p1)

ηT
+

η

2
. (7)

Define S := {i ∈ [n] : yig(xi) ≤ 0}; let M := |S|, and let u be the uniform distribution over S.
Then

RE(u, p1) =
n∑

i=1

ui ln
ui
1/n

= − lnM + lnn.

So, if η = γ/2, (7) implies

M ≤ n exp

(
−γ2T

8

)
. (8)
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4 Out-of-sample performance

The boosting algorithm from Section 3 addresses the computational problem that was raised. What
about the statistical problem? That is addressed next.

The type of hypothesis returned by the boosting algorithm is a (thresholded) linear combination
of hypotheses from H. Even if H has large cardinality or is infinite, a saving grace is that T may
be relatively small, making the linear combination sparse.

Proposition 1. Let H ⊂ {−1, 1}X be a hypothesis class, and let HT denote the set of hypotheses
of the form

x 7→ sign

(
1

T

T∑
t=1

ht(x)

)
where h1, . . . , hT ∈ H. Then for any x1, . . . , xn ∈ X ,

|HT (x1:n)| ≤ |H(x1:n)|T .

We now apply the uniform convergence theorem to get a bound on the error rate of the final
hypothesis ĥ returned by the boosting algorithm. Let (X1, Y1), . . . , (Xn, Yn) be the iid sample from
the data distribution P over X × {−1, 1}, and let ĥ be the output of the boosting algorithm when
provided these examples as training data. With probability at least 1− δ,

err(ĥ) ≤ errn(ĥ) + C

(√
Td0 log(n) + log(1/δ)

n

)
, (9)

where d0 is the VC dimension of H. Under the WLA (with advantage γ > 0), using the boosting
algorithm with η = γ/2 ensures

errn(ĥ) ≤ exp

(
−γ2T

8

)
,

so errn(ĥ) = 0 if

T =
8 log n

γ2
+ 1.

With this value of T , we find that err(ĥ) ≤ ϵ with probability at least 1− δ, provided that

n ≥ C ′
(
d0 log

2(1/ϵ)

γ2ϵ2
+

log(1/δ)

ϵ2

)
.

(Using a slightly different uniform convergence theorem replaces the 1/ϵ2 factors with 1/ϵ.)

5 Margins

The analysis in Section 4 shows that, with probability at least 1− δ,

err(ĥ) ≤ exp

(
−γ2T

8

)
+ C

(√
Td0 log(n) + log(1/δ)

n

)
.
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This bound has a term that decreases with T and another term that increases with T . This suggests
a trade-off that should be optimized by carefully choosing T (as done in the previous section).

However, in practice, it is occasionally observed with boosting that the error rate only decreases
with T , even beyond the point at which errn(ĥ) = 0. To provide a theoretical explanation of this
phenomenon, Schapire et al. (1998) gave a different analysis of boosting based on the notion of
margins.

Recall that ĥ(x) = sign(g(x)), where g(x) = 1
T

∑T
t=1 ht(x). Since ht(x) ∈ {−1, 1}, it follows

that g(x) ∈ [−1, 1]. Although only the sign of g(x) is used for prediction, the magnitude of g(x)
can be regarded as a measure of “confidence” in the prediction. Let us call yg(x) the margin of g
on (x, y) ∈ X ×{−1, 1}. The key high-level idea is that larger margins imply better generalization.

One way to take advantage of margins the theoretical analysis is to consider a loss function that
is sensitive to margins. For each γ ∈ [0, 1], define the γ-ramp loss ℓγ : R → R by

ℓγ(z) :=


1 if z ≤ 0,

1− z/γ if 0 < z ≤ γ,

0 if z > γ.

For any distribution P over X × {−1, 1}, any g : X → R, and any γ ∈ [0, 1],

err(sign ◦g) = E(X,Y )∼P [ℓ0(Y g(X))] ≤ E(X,Y )∼P [ℓγ(Y g(X))].

We’ll show that, with probability at least 1− δ,

sup
g∈conv(H)

E[ℓγ(Y g(X))]− 1

n

n∑
i=1

ℓγ(Yig(Xi)) ≤ C

√
d0 log n

γ2n
+

log(1/δ)

n
. (10)

Again, here d0 is the VC dimension of H. There is no dependence on the number of hypotheses
from H in the convex combination g.

Before proving this bound, let us see how to use it. A slight modification of the argument at
the end of Section 3 shows that, under the WLA (with advantage γ > 0), if η = γ/4, then

1

n

n∑
i=1

1{Yig(Xi) ≤ γ/2} ≤ exp

(
−γ2T

32

)
.

Therefore, in this case, with probability at least 1− δ,

err(sign ◦g) ≤ 1

n

n∑
i=1

ℓγ/2(Yig(Xi)) + C

√
d0 log n

γ2n
+

log(1/δ)

n

≤ 1

n

n∑
i=1

1{Yig(Xi) ≤ γ/2}+ C

√
d0 log n

γ2n
+

log(1/δ)

n

≤ exp

(
−γ2T

32

)
+ C

√
d0 log n

γ2n
+

log(1/δ)

n
.

The bound decreases with both T and γ.

6



The proof of (10) is based on Rademacher complexity. Consider the function class F ⊆
RX×{−1,1} consisting of functions of the form fg : X × {−1, 1} → R for each g ∈ conv(H), where

fg(x, y) := ℓγ(yg(x)).

With probability at least 1− δ, we have

sup
g∈conv(H)

E[ℓγ(Y g(X))]− 1

n

n∑
i=1

ℓγ(Yig(Xi)) ≤ 2ERadn(F) +

√
2 log(1/δ)

n
.

So it remains to bound the Rademacher complexity ERadn(F). We can write Radn(F) as

Eσ sup
g∈conv(H)

1

n

n∑
i=1

σiℓγ(Yig(Xi)) = Eσ sup
g∈conv(H)

1

n

n∑
i=1

σiϕi(g(Xi)),

where we define ϕi(t) = ℓγ(Yit) for each i ∈ [n]. It can be checked that each ϕi is L-Lipschitz for
L = 1/γ. Therefore, by the Lipschitz contraction property of Rademacher averages, we have

Eσ sup
g∈conv(H)

1

n

n∑
i=1

σiϕi(g(Xi)) ≤
1

γ
Eσ sup

g∈conv(H)

1

n

n∑
i=1

σig(Xi).

Next, observe that {(g(X1), . . . , g(Xn)) : g ∈ conv(H)} = conv({(h(X1), . . . , h(Xn)) : h ∈ H}).
Therefore

Eσ sup
g∈conv(H)

1

n

n∑
i=1

σig(Xi) = Eσ sup
h∈H

1

n

n∑
i=1

σih(Xi).

Finally, since H has VC dimension d0, Massart’s lemma and Sauer’s lemma implies

Eσ sup
h∈H

1

n

n∑
i=1

σih(Xi) ≤

√
2 ln

(
n

≤d0

)
n

.

Putting everything together gives (10).

6 Exponential loss

Consider a finite hypothesis class H = {h1, . . . , hd} ⊆ {−1, 1}X , and define the feature map ϕ : X →
R by

ϕ(x) = (h1(x), . . . , hd(x)).

A linear classifier in this feature space is defined by a weight vector λ = (λ1, . . . , λd) ∈ Rd:

x 7→ sign(⟨ϕ(x), λ⟩).

We’ll see that the boosting algorithm can be viewed as a coordinate-descent algorithm for mini-
mizing an average “exponential loss” objective

L(λ) :=
1

n

n∑
i=1

exp(−yi⟨ϕ(Xi), λ⟩).
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Note that L(λ) is an upper-bound on the training error rate of the linear classifier.
The partial derivative of L with respect to the j-th variable is

∂jL(λ) = −
n∑

i=1

exp(−yi⟨ϕ(xi), λ⟩)yihj(xi).

In coordinate descent, we repeatedly choose some j ∈ [d] and adjust the j-th variable so as to
improve the objective value.

Suppose in round t of coordinate descent, we have weight vector is λt−1 = (λt−1,1, . . . , λt−1,d) ∈
Rd. (For round t = 1, we start with λ0 = (0, . . . , 0) ∈ Rd.) Define probability vector pt =
(pt,1, . . . , pt,n) ∈ ∆n−1 by

pt,i =
exp(−yi⟨ϕ(xi), λt−1⟩)

Zt
where Zt =

n∑
i=1

exp(−yi⟨ϕ(xi), λt−1)⟩.

Then, the j-th partial derivative of L at λt−1 is

∂jL(λt−1) = −
n∑

i=1

exp(−yi⟨ϕ(xi), λt−1⟩)yihj(xi)

= −Zt

n∑
i=1

pt,iyihj(xi).

Under the weak learning assumption, there exists j ∈ [d] such that −∂jL(λt−1) ≥ Ztγ > 0. So
assume we choose such a jt ∈ [d] with −∂jtL(λt−1) > 0. Then we can decrease the objective by
increasing λt−1,jt a little bit—say, by adding η/2 > 0—and leaving all other components of λt−1

unchanged:

λt,j :=

{
λt−1,j + η/2 if j = jt,

λt−1,j if j ̸= jt.

With this updated weight vector λt = (λt,1, . . . , λt,d) ∈ Rd, we have a corresponding updated
probability vector pt+1 = (pt+1,1, . . . , pt+1,n) ∈ ∆n−1 defined by

pt+1,i ∝ pt,i exp
(
−η

2
yihjt(xi)

)
∝ pt,i exp(−ηℓt,i),

where ℓt = (ℓt,1, . . . , ℓt,n) ∈ {0, 1}n is the loss vector with

ℓt,i = 1{hjt(xi) = yi}.

The choice of hjt and the way that pt is updated to pt+1 is the same as in the boosting algorithm.
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