
COMS 4773: Online allocation

Daniel Hsu

February 17, 2024

1 Online allocation

The Online Allocation problem, proposed by Freund and Schapire (1997), is a generalization of
the “Using Expert Advice” problem under a particular restriction of Nature that will be explained
shortly. Define the following sets of N -vectors:

RN
+ :=

{
x = (x1, . . . , xN ) ∈ RN : xi ≥ 0 for all i ∈ [N ]

}
,

∆N−1 :=

{
x = (x1, . . . , xN ) ∈ RN

+ :
N∑
i=1

xi = 1

}
.

(The set RN
+ is the non-negative orthant of RN , and the set ∆N−1 is the probability simplex in

RN .) And define the standard inner product ⟨·, ·⟩ : RN × RN → R by

⟨x, y⟩ :=
N∑
i=1

xiyi for all x = (x1, . . . , xN ) ∈ RN and y = (y1, . . . , yN ) ∈ RN .

For round t = 1, 2, . . . :

• The learner chooses an allocation vector pt ∈ ∆N−1.

• Nature then reveals a loss vector ℓt ∈ RN
+ to the learner.

• The learner incurs loss ⟨pt, ℓt⟩.

The cumulative (or total) loss of the learner after T rounds is

LT :=
T∑
t=1

⟨pt, ℓt⟩.

(The number T is called the horizon.) The cumulative loss of the allocation vector q ∈ ∆N−1 is

LT,q :=
T∑
t=1

⟨q, ℓt⟩.

If q is an elementary vector1, then we write LT,i to mean LT,ei . The regret of the learner to q after
T rounds is

RT,q := LT − LT,q

1The N elementary (or coordinate) vectors (in RN ) are e1, . . . , eN , where ei has a 1 in the i-th entry and 0
elsewhere.

1



(with RT,i = RT,ei), and
RT := max

q∈∆N−1
RT,q = LT − min

q∈∆N−1
LT,q

is the regret of the learner (to the best allocation) after T rounds.
Regret is named as such because it measures the extra loss incurred by the learner compared

to having used the “best-in-hindsight” allocation in all T rounds. Note that, by linearity, we have

T∑
t=1

⟨q, ℓt⟩ =

〈
q,

T∑
t=1

ℓt

〉
,

so the “best-in-hindsight” cumulative loss achievable by a single allocation vector is determined by
minimizing a linear function (given by

∑T
t=1 ℓt) over the probability simplex. This maximum value

will always be achieved at a vertex of the simplex, i.e., one of the N elementary vectors. So RT

can also be written as
RT = max

i∈[N ]
LT − LT,i = LT − min

i∈[N ]
LT,i.

2 Connection between online allocation and using expert advice

Consider the following randomized version of WEIGHTED MAJORITY for the “Using Expert
Advice” problem, also due to Littlestone and Warmuth (1994), and aptly named RANDOMIZED
WEIGHTED MAJORITY. The weights wt,i are initialized and updated in exactly the same way
as in WEIGHTED MAJORITY; the only difference is in how the prediction is determined.

• Let pt = (pt,1, . . . , pt,N ) ∈ ∆N−1 be defined by

pt,i :=
wt,i

Zt
for all i ∈ [N ],

where Zt :=
∑N

i=1wt,i.

• Let it be a [N ]-valued random variable that that takes value i ∈ [N ] with probability pt,i.

• The learner predicts at = bt,it .

Note that this algorithm is still subject to the lower bound of Cover (1965).
However, if we further restrict Nature in the following way, then we will be able to draw a

connection between the way RANDOMIZED WEIGHTED MAJORITY makes predictions for the
“Using Expert Advice” problem and the Online Allocation problem. Specifically, we assume that
Nature is an oblivious adversary2, which means the following: Nature fixes, once and for all prior
to the first round, the (infinite) sequence of outcomes y1, y2, . . . , as well as the (infinite) sequences
of the experts’ predictions b1,i, b2,i, . . . for each i ∈ [N ]. This assumption prevents Cover’s scenario,
since Nature now cannot simply set yt to be the opposite of the learner’s prediction.

2RANDOMIZED WEIGHTED MAJORITY also works well under slightly weaker assumptions on Nature. Specif-
ically, it suffices to allow Nature to choose the experts’ predictions bt,i’s and the outcome yt after the learner choose
pt, but these choices must be made before the random choice of it is realized.

2



Observe that pt in RANDOMIZED WEIGHTED MAJORITY is a deterministic function of the
outcomes and expert’s predictions. Therefore, the probability that the learner makes a mistake in
round t is

Pr(at ̸= yt) =
N∑
i=1

Pr(at ̸= yt ∧ it = i)

=

N∑
i=1

Pr(it = i) · Pr(at ̸= yt | it = i)

=
N∑
i=1

Pr(it = i) · Pr(bt,i ̸= yt | it = i)

=
N∑
i=1

pt,i · 1{bt,i ̸= yt}

= ⟨pt, ℓt⟩

where we define the loss vector ℓt ∈ RN
+ by

ℓt := (1{bt,1 ̸= yt}, . . . ,1{bt,N ̸= yt}) ∈ [0, 1]N . (1)

Therefore, we can express the sum of these probabilities in terms of quantities from the Online
Allocation problem:

T∑
t=1

Pr(at ̸= yt) =
T∑
t=1

⟨pt, ℓt⟩ = LT .

This sum of probabilities is also equal to the expected number of mistakes made by the learner
after T rounds.

With this definition of loss vectors ℓt, it is also easy to verify that LT,i is the number of mistakes
of the i-th expert after T rounds. And therefore the regret RT = LT −mini∈[N ] LT,i is the expected
number of additional mistakes of the learner beyond the number of mistakes of the best expert.

3 Hedge

HEDGE is an algorithm due to (Freund and Schapire, 1997) for the Online Allocation problem.

• Initially, set w1,i := 1 for all i ∈ [N ].

• In round t:

– Let pt = (pt,1, . . . , pt,N ) ∈ ∆N−1 be defined by

pt,i :=
wt,i

Zt
for all i ∈ [N ],

where Zt :=
∑N

i=1wt,i.

– Observe loss vector ℓt = (ℓt,1, . . . , ℓt,N ) ∈ RN
+ .

3



– Update: for each i ∈ [N ],
wt+1,i = wt,i · exp(−ηℓt,i).

Above, η > 0 is a hyperparameter of the algorithm. (Freund and Schapire (1997) use the parame-
terization β = e−η.) It is clear that HEDGE updates the weights wt,i in exactly the same way as
(RANDOMIZED) WEIGHTED MAJORITY for the special case of loss vectors from (1).

Theorem 1 (Freund and Schapire, 1997). For any T , any η > 0, and any loss vectors ℓ1, . . . , ℓT ∈
RN
+ , HEDGE with hyperparameter η > 0 guarantees that

RT ≤ logN

η
+

η

2

T∑
t=1

⟨pt, ℓ2t ⟩

where ℓ2t := (ℓ2t,1, . . . , ℓ
2
t,N ) ∈ RN

+ for all t. Furthermore, if ℓt ∈ [0, 1]N for all t, then

RT ≤ logN

η
+

ηT

2
and (1− η/2)RT ≤ logN

η
+

η

2
min
i∈[N ]

LT,i.

Finally, there is a choice of η > 0 such that RT ≤
√
2T logN , and there is also a choice of η > 0

such that RT ≤ O(
√

mini∈[N ] LT,i logN + logN).

The statement of Theorem 1 is slightly different from how it is stated by Freund and Schapire
(1997) but not in any essential way for our purposes. The proof below is based on that from
Freund and Schapire (1999), which uses the concept of relative entropy (a.k.a. Kullback-Leibler
divergence).

4 Entropy and relative entropy

The (Shannon) entropy H(q) of a (discrete) probability distribution q = (q1, . . . , qN ) ∈ ∆N−1 over
[N ] is defined by

H(q) :=
N∑
i=1

qi log
1

qi
.

(Here, we regard 0 log 0 as 0 rather than −∞.) Entropy is a central concept in information theory
and many other fields, with several interpretations. One way to think about entropy is as a measure
of average “surprise” one experiences when observing the value of a random variable. The idea is
that you experience more surprise when you see rare events than when you see common events.
Letting log(1/qi) be the quantitative measure of surprise for the outcome i, we then see H(q) to be
exactly the expected surprise. (There are many other interpretations of entropy, such as the average
number of bits needed to communicate a random message X ∼ q, but we will not discuss them
here.) The maximum value of H(q) is logN , achieved by the uniform distribution (1/N, . . . , 1/N).

Now consider two probability distributions, p, q ∈ ∆N−1. The cross entropy of q from p is

CE(q, p) :=

N∑
i=1

qi log
1

pi
.

4



Cross entropy measures the average surprise when outcomes are distributed according to q, but the
measure of surprise is (perhaps mistakenly) based on p. The relative entropy of q from p is

RE(q, p) :=
N∑
i=1

qi log
qi
pi

= CE(q, p)−H(q)

is the excess average surprise in this scenario. Note that RE(q, p) is well-defined only if q is
dominated by p (written q ≪ p, which means that for any i, we have pi = 0 only if qi = 0 as well).
If q ̸≪ p, then we define RE(q, p) := +∞.

Proposition 1 (Gibbs’ inequality). RE(q, p) ≥ 0 with equality if and only if q = p.

Proof. A Taylor expansion of log gives

log(1 + x) ≤ x for all x > −1. (2)

Without loss of generality, assume q ≪ p. Then

RE(q, p) = −
N∑
i=1

qi log

(
1 +

pi
qi

− 1

)

≥ −
N∑
i=1

qi

(
pi
qi

− 1

)
(by (2))

= −
N∑
i=1

pi − qi = 0.

Equality holds iff pi/qi − 1 = 0 for all i, which is equivalent to pi = qi for all i.

5 Proof of Theorem 1

To prove Theorem 1, it suffices to show that, for any q ∈ ∆N−1, we have

T∑
t=1

⟨pt − q, ℓt⟩ ≤
logN

η
+

η

2

T∑
t=1

⟨pt, ℓ2t ⟩.

The additional parts (after “Furthermore”) follow by using the fact that ℓ2t,i ≤ ℓt,i when ℓt ∈ [0, 1]N .
The following is the key lemma in the proof.

Lemma 1. Fix any p ∈ ∆N−1 and any ℓ ∈ RN
+ , and define p′ ∈ ∆N−1 by

p′i :=
pi exp(−ηℓi)∑N
j=1 pj exp(−ηℓj)

for all i ∈ [N ].

Then for any q ∈ ∆N−1 such that q ≪ p,

RE(q, p′)− RE(q, p) ≤ η⟨q − p, ℓ⟩+ η2

2
⟨p, ℓ2⟩.

where ℓ2 := (ℓ21, . . . , ℓ
2
N ).

5



Proof. Taylor expansion of exp gives

exp(x) ≤ 1 + x+
x2

2
for all x ≤ 0. (3)

Therefore

RE(q, p′)− RE(q, p) =
N∑
i=1

qi log
pi
p′i

= η⟨q, ℓ⟩+ log

 N∑
j=1

pj exp(−ηℓj)


≤ η⟨q, ℓ⟩+ log

 N∑
j=1

pj

(
1− ηℓj +

η2

2
ℓ2j

) (by (3))

= η⟨q, ℓ⟩+ log

(
1− η⟨p, ℓ⟩+ η2

2
⟨p, ℓ2⟩

)
≤ η⟨q, ℓ⟩ − η⟨p, ℓ⟩+ η2

2
⟨p, ℓ2⟩ (by (2)).

Using Lemma 1, we have for any t and any q ∈ ∆N−1,

η⟨pt − q, ℓt⟩ ≤ RE(q, pt)− RE(q, pt+1) +
η2

2
⟨pt, ℓ2t ⟩.

Sum both sides over t = 1, . . . , T to obtain

η
T∑
t=1

⟨pt − q, ℓt⟩ ≤
T∑
t=1

RE(q, pt)− RE(q, pt+1) +
η2

2
⟨pt, ℓ2t ⟩

= RE(q, p1)︸ ︷︷ ︸
≤logN

−RE(q, pT+1)︸ ︷︷ ︸
≥0

+
η2

2

T∑
t=1

⟨pt, ℓ2t ⟩

≤ logN +
η2

2

T∑
t=1

⟨pt, ℓ2t ⟩

where the last inequality uses Proposition 1 and the definition of p1.

6 Application to zero-sum games

A zero-sum game is a two-player game in which the loss of one player is the gain of the other player.
The loss/gain is specified by a payoff matrix A ∈ Rm×n; for simplicity, assume the entries of A
are from [0, 1]. The “row” player has m possible actions, and the “column” player has n possible
actions. The players are permitted to use mixed strategies, which are probability distributions over
their respective action sets. If the row player chooses p ∈ ∆m−1 and the column player chooses
q ∈ ∆n−1, then the loss of the row player (equivalently, the gain of the column player) is pTAq.

6



We have been ambiguous about exactly when the choices of the players are made. If the row
player chooses p first, and then the column player chooses q in response to seeing p, then the best
possible loss of the row player is

min
p∈∆m−1

max
q∈∆n−1

pTAq. (4)

However, if the column player chooses q first, and then the row player chooses p in response to
seeing q, then the best possible gain of the column player is

max
q∈∆n−1

min
p∈∆m−1

pTAq. (5)

Von Neumann’s min-max theorem states that (4) and (5) are equal; there is no advantage to “going
first” in a zero-sum game. This common value of (4) and (5) is called the value of the game.

Freund and Schapire (1999) showed that Von Neumann’s min-max theorem can be proved
largely as a corollary of Theorem 1. There are two parts to the proof. The first part is the “easy”
direction (and doesn’t involve Theorem 1), although we give the steps below very explicitly for
completeness.

Proposition 2. For any A ∈ [0, 1]m×n,

max
q∈∆n−1

min
p∈∆m−1

pTAq ≤ min
p∈∆m−1

max
q∈∆n−1

pTAq.

Proof. Fix any q′ ∈ ∆n−1. Then, for every p ∈ ∆m−1,

pTAq′ ≤ max
q∈∆n−1

pTAq.

Let p′ be the choice of p ∈ ∆m−1 that minimizes the right-hand side, so

(p′)TAq′ ≤ max
q∈∆n−1

(p′)TAq

= min
p∈∆m−1

max
q∈∆n−1

pTAq.

We clearly also have
(p′)TAq′ ≥ min

p∈∆m−1
pTAq′,

so combining the previous two displayed inequalities gives

min
p∈∆m−1

pTAq′ ≤ min
p∈∆m−1

max
q∈∆n−1

pTAq

Since this inequality holds for every q′ ∈ ∆n−1, it also holds for the choice of q′ that maximizes the
left-hand side:

max
q∈∆n−1

min
p∈∆m−1

pTAq ≤ min
p∈∆m−1

max
q∈∆n−1

pTAq.

The second part is the “hard” direction, which involves the execution of HEDGE in an instance
of the Online Allocation problem that is constructed on-the-fly.

Proposition 3. For any A ∈ [0, 1]m×n,

min
p∈∆m−1

max
q∈∆n−1

pTAq ≤ max
q∈∆n−1

min
p∈∆m−1

pTAq.

7



Proof. Consider the execution of HEDGE for selecting p1, p2, . . . , pT ∈ ∆m−1 (so N = m) with loss
vectors ℓ1, ℓ2, . . . , ℓT ∈ [0, 1]m defined by ℓt = Aqt for all t, where qt ∈ ∆n−1 is chosen so that

pT
tAqt = max

q∈∆n−1
pT
tAq.

By Theorem 1, using η =
√
(2 logm)/T , we have

T∑
t=1

⟨pt, ℓt⟩ ≤ min
p∈∆m−1

T∑
t=1

⟨p, ℓt⟩+
√
2T logm.

This implies

1

T

T∑
t=1

pT
tAqt ≤ min

p∈∆m−1

1

T

T∑
t=1

pTAqt +

√
2 logm

T
. (6)

Define p̄ = 1
T

∑T
t=1 pt and q̄ = 1

T

∑T
t=1 qt. Then

min
p∈∆m−1

max
q∈∆n−1

pTAq ≤ max
q∈∆n−1

p̄TAq

= max
q∈∆n−1

1

T

T∑
t=1

pT
tAq

≤ 1

T

T∑
t=1

max
q∈∆n−1

pT
tAq

=
1

T

T∑
t=1

pT
tAqt

≤ min
p∈∆m−1

1

T

T∑
t=1

pTAqt +

√
2 logm

T
(by (6))

= min
p∈∆m−1

pTAq̄ +

√
2 logm

T

≤ max
q∈∆n−1

min
p∈∆m−1

pTAq +

√
2 logm

T
.

Now let T → ∞, to conclude the proof.

The proof of Proposition 3 shows how to use HEDGE to construct the mixed strategies p̄ and
q̄, essentially by repeatedly simulating the two-player game, where the row player’s pt ∈ ∆m−1 is
controlled by HEDGE, and the column player’s qt ∈ ∆n−1 is the best response to pt. If val(A)
denotes the value of the game for payoff matrix A, then p̄ and q̄ satisfy

max
q∈∆n−1

p̄TAq ≤ val(A) +

√
2 logm

T
and min

p∈∆m−1
pTAq̄ ≥ val(A)−

√
2 logm

T
.

The proof does not specifically rely on HEDGE (except for the form of the regret bound in (6));
other algorithms that ensure sublinear regret for Online Allocation could also be used.

8



7 Lower bound

How good is HEDGE for the Online Allocation problem? Its worst-case regret bound after T rounds
is O(

√
T logN) assuming loss vectors come from [0, 1]N . It turns out this is the best possible, for

any algorithm (up to constants).

Theorem 2. Consider any algorithm for the Online Allocation problem. Let RT (ℓ1, . . . , ℓT ) denote
the regret of the algorithm after T rounds with loss vectors ℓ1, . . . , ℓT ∈ [0, 1]N . Then

sup
T,N∈N

sup
ℓ1,...,ℓT∈[0,1]N

RT (ℓ1, . . . , ℓT )√
T logN

2

≥ 1.

To prove a lower bound of this sort, it would seem one needs to reason about how all possible
algorithms for Online Allocation. This should seem like a rather daunting task. We will leverage
the constraints imposed by the Online Allocation problem on what “information” the algorithm
has access to when choosing its allocation vector in each round. How can this be enough to prove
a lower bound?

We completely side-step the issue of reasoning about what loss vectors would make a particular
algorithm incur large regret. This is achieved by using the probabilistic method. The idea is the
following:

1. Define a probability distribution for the loss vectors ℓ1, . . . , ℓT , and compute (a lower bound
on) the expected value of RT (ℓ1, . . . , ℓT ).

2. Leverage the fact that there must be some element in the sample space, which ultimately
determines ℓ1, . . . , ℓT and RT (ℓ1, . . . , ℓT ), such that RT (ℓ1, . . . , ℓT ) is at least as large as its
expected value.

So it suffices to show that

E[RT (ℓ1, . . . , ℓT )] ≥
√

T logN

2
for some suitable probability distribution for ℓ1, . . . , ℓT .

(TO BE COMPLETED)

8 Multi-armed bandit problem

References

Thomas M Cover. Behavior of sequential predictors of binary sequences. Transactions on Prague
Conference on Information Theory Statistical Decision Functions, Random Processes, pages 263–
272, 1965.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games
and Economic Behavior, 29(1-2):79–103, 1999.

Nick Littlestone and Manfred K Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994.

9


	Online allocation
	Connection between online allocation and using expert advice
	Hedge
	Entropy and relative entropy
	Proof of thm:hedge
	Application to zero-sum games
	Lower bound
	Multi-armed bandit problem

