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Recap: JL lemma

JL lemma. For any ¢ € (0,1/2), point set S C RY of cardinality
|S| = n, and k € N such that k > %, there exists a linear map

f: RY — R* such that
(1=e)lx=yll3 < [[F(x)—f(y)l5 < (1+e)|x—yl5 forall x,y €S.

Main probabilistic lemma

3 random linear map M: RY — RX such that, for any u € S971,

P(]Hmung e s> < 2exp(-Qke?)).

JL lemma is consequence of main probabilistic lemma as applied to
collection T C S971 of | T| = (5) unit vectors (+ union bound):

P(Tea%(‘ﬂMuH%—l‘ > s) < |T]-2ep(~Qke?))

Related question

For T C S9-1 expected maximum deviation

E max| | Mull - 1| < 7
uceT

General questions

For arbitrary collection of zero-mean random variables {X; : t € T}:

Emax Xy < 7?7
teT

Emax [ X:| < 7
teT




Finite collections

Let {X; : t € T} be a finite collection of v-subgaussian and
mean-zero random variables. Then

ET€a7>_<Xt < 4/2vIn|T]|.

» Doesn’t assume independence of {X; :t € T}.
» (Independent case is the worst.)
» Get bound on E maxc7 | X;| as corollary.

» Apply result to collection

{Xp:te TU{-X;:te T}.

Proof

Starting point is identity from two invertible operations (A > 0):

1
E rtnea%( Xt = 3 In exp (E rlpea7>_< )\Xt)

v

Apply Jensen’s inequality:
1 1
< X InE exp (rtn6a7>_< )\Xt) = 3 In]E(rpea% exp(AXt)>
» Bound max with sum, and use linearity of expectation:
1
< —| E AX
< 3l Z exp(AXt)
teT
» Exploit v-subgaussian property:

1 5 _In|T] vA
< XlntGZTexp(v)\ /2) = = +7

» Choose appropriate A to conclude.




Alternative proof

Integrate tail bound: for any non-negative random variable Y/,
E(Y) = / P(Y > y)dy.
0

For Y = max | X¢|, gives same result up to constants.
te

Infinite collections

For infinite collection of zero-mean random variables {X; : t € T }:

ESUp Xt S ?
teT

» In general, can go — oo.
» To bound, must exploit correlations among the X;.

» E.g., in {{HMUHE —1l:ue T} for T C S971, the random

variables for u and u + §, for small &, are highly correlated.




Convex hulls of linear functionals

Let T C RY be a finite set of vectors, and let X be a random vector
in R? such that (w, X) is v-subgaussian for every w € T. Then

E w, X) < /2vin|T]|.
Wercrgﬁi((T)<W’ ) = vin|T]

Proof:

» Write w € conv(T) as W =, 7 pww for some p,, > 0 that
sum to one.
» Observe that

" _ - .
(W, x) M%:pr<w,x> < rutl€a¥<w,x)

» So max over w € conv(T) is at most max over w € T.
» Conclude by applying previous result for finite collections. [

Euclidean norm

Let X be a random vector such that (u, X) is v-subgaussian for
every u € S971. Then

E|X|2 = E max (u.X) < 2V2vin5¢ = O(Vvd).
ucsS9—

Key step of proof:

» For any € > 0, there is a finite subset N' C S9! of cardinality
IN| < (14 2/¢)9 such that, for every u € S9=1, there exists
ug € N with

|lu— w2 < ¢.

» Such a set \ is called an e-net for S971.
> We need a 1/2-net, of cardinality at most 5.




Proof

» Write u € S91 s
u = ug+dq,

where ug € N, g € S971, § € [0,1/2], so
<U,X> - <U0,X> +5<qax>

» Observe that

max (u, X) < max(ug,X)+ max max 4(q, X
uesd—l< > uO€N< 0 > 56[0,1/2]q€5d_1 (q >

1
< X) 4 - X .
< max (o, X) +3 max (@ X)

» So max over S971 is at most twice max over N\
» Conclude by applying previous result for finite collections. [

e-nets for unit sphere
There is an e-net for S9=1 of cardinality at most (1 + 2/¢)9.

Proof:

» Repeatedly select points from S9! so that each selected point
has distance more than ¢ from all previously selected points.

» Equivalent: repeatedly select points from S9! as long as balls
of radius £/2, centered at selected points, are disjoint.

> (Process must eventually stop.)

» When process stops, every u € S9! is at distance at most ¢
from selected points.
» l.e., selected points form an e-net for S9=1.

> If select N points, then the N balls of radius €/2 are disjoint,
and they are contained in a ball of radius 1+ ¢/2. So

Nvol((/2)B9) < vol((1+¢/2)BY).

> This implies N < (14 2/¢)7. O




Remarks

» All previous results also hold with random variables are
(v, c)-subexponential (possibly with ¢ > 0), with a slightly
different bound: e.g.,

< .
Erpea%(Xt < max{\/2v|n | T|, 2¢cIn \T\}

» Also easy to get probability tail bounds (rather than
expectation bounds).

Subspace embeddings




Subspace JL lemma

Consider kxd random matrix M whose entries are iid N(0, 1/k).
For a W C RY be a subspace of dimension r,

r r
E Mul3-1] < O /—+~+|.
uesr?iXmW‘H ullz ‘_ ( k+k)

Bound is at most € when k > O(ELZ)

Implies existence of mapping M: RY — R¥ that approximately
preserves all distances between points in .

Proof of subspace JL lemma

Let columns of @ be ONB for W. Then

max ’HMuH% — 1‘ = max [u' Q" (M™M — 1) Qu’
ucSI-1nw ucSr—1
= max u Q' (M"M—-1)Qv.
u,vcSr—1

Lemma. For any u,v € S 1,
Xuy = u' Q" (MM —I)Qv

is (O(1/k), O(1/k))-subexponential.




Proof of subspace JL lemma (continued)
Foru,ve S Xy =u" Q" (M™M — I)Qu.

Let A be 1/4-net for S"1.
» Write u,v € S™ ! as
u = uy+ep, v = vg+4q,
where ug,vo € N, p,q € S" 1 and ¢,5 € [0,1/4], so
Xuyv = Xugvo +EXpy +0Xug q -

» Therefore

1
max Xyv < max Xy,.v, += max X
u,vGSr_l ) U07V0€N 0,V0 2 p,qESr_l p.,q >

which implies

max Xyv < 2 max  Xyg v, -
uveSr—1 ug,voE

» Conclude by applying previous result for finite collections.

Application to least squares




Big data least squares

> Input: matrix A € R"™9 vector b € R" (n>> d).

» Goal: find x € RY so0 as to (approx.) minimize ||Ax — b||3.
» Computation time: O(nd?).

» Can we speed this up?

Simple approach

\4

Pick m < n.

Let M be random mxn matrix (e.g., entries iid N(0,1/m),
Fast JL Transform).

Let A:= MA and b := Mb.

Obtain solution X to least squares problem on (Z\, b).

v

\ A 4




Simple (somewhat loose) analysis

» Let W be subspace spanned by columns of A and b.

» Dimension is at most d + 1.

If m> O(d/e?), then M is subspace embedding for W:

v

(1—¢)|x|3 < [IMx||3 < (1+¢)|x||3 forall xec W.
> Let x, := arg min,cgd ||Ax — b||3.
. 1 .
|A% = bl; < —[[M(A% - b)|l;

1
< 7 IM(Ax. — b)|I3

1+ ¢
—€

< |Ax, - b|3.

» Running time (using FJLT): O((m + n)dlog n+ mdz). O

Another perspective: random sampling

> Pick random sample of m < n of rows of (A, b); obtain
solution X for least squares problem on the sample.

» Hope X is also good for the original problem.
» In statistics, this is the random design setting for regression.

» Random sample of covariates A € R™<9 and responses b € R
from full population (A, b).

» Least squares solution X on (Z, b) is MLE for linear regression
coefficients under linear model with Gaussian noise.

» Can also regard x as empirical risk minimizer among all linear
predictors under squared loss.




Simple random design analysis

> Let x, := arg min,cga ||Ax — b||3.
» With high probability over choice of random sample,

|A% - bJ3 < <1+o(g)>-|Ax*—b|§

(up to lower-order terms), where

ko= n-m?>]<\l(ATA)‘mATeiH§
1€ln

and e; is i-th coordinate basis vector.
» Write thin SVD of Aas A= USV", where U € R"™9_ Then
(ATA)2AT = (vS§2vT)Y2vsuT = vUT.

> SO K = n-maX;c[,] U e;|3.

> ||U" e;||3 is statistical leverage score for i-th row of A: measures
how much “influence” i-th row has on least squares solution.

Statistical leverage

> i-th statistical leverage score: {; := ||U" e;||3, where U € R"*9
is matrix of left singular vectors of A.
» Two extreme cases:

U = laxd = n-max¥f; = n.
0(r—dyxd i€[n]
1

U = ﬁ [Hnel H.,e, --- Hned} = n- I;Té?;](g, = d,

where H,, is nxn Hadamard matrix.
First case: first d rows are the only rows that matter.
Second case: all n rows equally important.

A\ 2 4




Ensuring small statistical leverage

» To ensure situation is more like second case, apply random
rotation (e.g., randomized Hadamard transform) to A and b.

» Randomly mixes up rows of (A, b) so no single row is (much)
more important than another.
> Get n-max;c[n i = O(d + log n) with high probability.

» To get 1 + ¢ approximation ratio, i.e.,

|A% = b||3 < (1+¢)-[|Ax. - b|3,

"> O(m),
g

suffices to have

Application to compressed sensing




Under-determined least squares

v

Input: matrix A € R"™9 vector b € R" (n < d).
Goal: find sparsest x € RY so as to minimize ||Ax — b||3.

v

\4

NP-hard in general.
> Suppose b = Ax for some X € RY with nnz(x) < k.
» l.e., X is k-sparse.

» Is X the (unique) sparsest solution?
» If so, how to find it?

Null space property

Lemma. Null space of A does not contain any non-zero 2k-sparse

vectors <= every k-sparse vector x € RY is the unique solution to
Ax = Ax.

» Proof. (=) Take any k-sparse vectors x and y with Ax = Ay.
Want to show x = y.

» Then x — y is 2k-sparse, and A(x — y) = 0.

» By assumption, null space of A does not contain any non-zero
2k-sparse vectors.

» Sox—y = 0,ie,x=y.

» (<) Take any 2k-sparse vector z in the null space of A. Want
to show z = 0.

» Write it as z = x — y for some k-sparse vectors x and y with
disjoint supports.

» Then A(x — y) =0, and hence x = y by assumption.

» But x and y have disjoint support, so it must be that
x=y=0,s0z=0. o




Null space property from subspace embeddings

If Ais nxd random matrix with iid N(0O, 1) entries, then under what
conditions is there no non-zero 2k-sparse vector in its null space?

» Want: for any 2k-sparse vector z, Az # 0, i.e., ||Az||3 > 0.
» Consider a particular choice Z C [d] of |Z| = 2k coordinates,
and the corresponding subspace Wy spanned by {e; : i € Z}.

» Every 2k-sparse z is in Wz for some 7.

» Sufficient for A to be 1/2-subspace embedding for Wz for all Z:

3

1
EHZH% < ||Az|j5 < 5”2”% for all 2k-sparse z.

Null space property from subspace embeddings (continued)

v

Say A fails for Z if it is not a 1/2-subspace embedding for Wr.
Subspace JL lemma:

v

P(A fails for ) < 2°0) exp(—Q(n)).

» Union bound over all choices of Z with |Z| = 2k:
: d \ ok
P(A fails for some Z) < ok 25V exp(—=Q(n)) .

» To ensure this is, say, at most 1/2, just need

n > O(k—l—log (;{)) = O(k + klog(d/k)) .




Restricted isometry property

(¢, 9)-restricted isometry property (RIP):

(1-6)|zI3 < |Az]3 < (1+8)]z]3 for all f-sparse z.

» Many algorithms can recover unique sparsest solution under

RIP (with £ = O(k) and § = Q(1)).

» E.g., Basis pursuit, Lasso, orthogonal matching pursuit.




