Probability review

Daniel Hsu

COMS 4772

Linearity of expectation
Let $X = (X_1, X_2, \ldots, X_d)$ be random vector with uniform distribution on unit sphere $S^{d-1} := \{ x \in \mathbb{R}^d : \|x\|_2 = 1 \}$.

Are X_1, X_2, \ldots, X_d independent?

- No! But almost . . .

What is $E(X_1)$?

- If σ is the pdf, then for any $u = (u_1, u_2, \ldots, u_d) \in S^{d-1}$,
 \[\sigma(u_1, u_2, \ldots, u_d) = \sigma(-u_1, u_2, \ldots, u_d). \]

- So $E(X_1) = 0$.

- Similarly, $E(X_1X_2) = E(X_1X_2X_3) = \cdots = 0$.

- Also for any distinct $i_1, i_2, \ldots \in [d]$, $E(X_{i_1}X_{i_2} \cdots) = 0$.

What is $E(X_1^2)$?

- By linearity of expectation,
 \[E\|X\|_2^2 = \sum_{i=1}^{d} E(X_i^2). \]

- But $\|X\|_2^2 = 1$ since X is a random unit vector.

- So by symmetry,
 \[E(X_1^2) = \frac{1}{d}. \]

- Nothing special about direction $(1, 0, \ldots, 0) \in S^{d-1}$.

- For any unit vector $u \in S^{d-1}$,
 \[E(\langle u, X \rangle^2) = \frac{1}{d}. \]
Variance

- **Variance** is expected (squared) deviation of random variable from its mean:
 \[\text{var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] \, . \]

- Another formula: \(\text{var}(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \).

- Can deduce \((\mathbb{E}(X))^2 \leq \mathbb{E}(X^2) \) since variance is non-negative.
 - This is special case of *Jensen’s inequality*: for any convex function \(f \) and any random vector \(X \), \(f(\mathbb{E}(X)) \leq \mathbb{E}(f(X)) \).

- Applying to random variable \(|X - \mathbb{E}(X)| \),
 \[\mathbb{E}|X - \mathbb{E}(X)| \leq \sqrt{\text{var}(X)} =: \text{stddev}(X) \, . \]

- E.g., for uniform random unit vector \(X \), and any \(u \in S^{d-1} \),
 \[\mathbb{E}|\langle u, X \rangle| \leq 1/\sqrt{d} \, . \]

Covariance

- If \(X \) and \(Y \) are random variables, then for any scalars \(a, b \in \mathbb{R} \),
 \[\text{var}(aX + bY) = a^2 \text{var}(X) + 2ab \text{cov}(X, Y) + b^2 \text{var}(Y) \]
 where
 \[\text{cov}(X, Y) = \mathbb{E}[(X - \mathbb{E}(X))(Y - \mathbb{E}(Y))] \, . \]

- If \(X \) and \(Y \) are independent, \(\text{cov}(X, Y) = 0 \), and hence
 \[\text{var}(aX + bY) = a^2 \text{var}(X) + b^2 \text{var}(Y) \, . \]

- Variance of the sum of *independent* random variables is the sum of the variances.
Symmetric random walk on \mathbb{Z}

- Stochastic process $(S_t)_{t \in \mathbb{Z}_+}$.
 - $S_0 := 0$
 - For $t \geq 1$,
 \[S_t := S_{t-1} + X_t, \]
 where $\mathbb{P}(X_t = -1) = \mathbb{P}(X_t = 1) = 1/2$. Also assume
 $\{X_t : t \in \mathbb{N}\}$ are independent. (Called Rademacher r.v.'s.)

- $S_n = \sum_{t=1}^{n} X_t$, sum of n iid Rademacher r.v.'s.
- $\text{var}(S_n) = \sum_{t=1}^{n} \text{var}(X_t) = n$.
- So expected distance from origin is
 \[\mathbb{E} |S_n| \leq \sqrt{\text{var}(S_n)} \leq \sqrt{n}. \]

- Note: on some realizations, can have $|S_n| = \omega(\sqrt{n})$.
 - But how many?

Tail bounds
Tail bounds

- **Markov’s inequality**: for any \(t \geq 0 \),
 \[
 \mathbb{P}(|X| \geq t) \leq \frac{\mathbb{E}|X|}{t}.
 \]

 - Proof:
 \[
 t \cdot 1\{|X| \geq t\} \leq |X|.
 \]

 - Application to symmetric random walk:
 \[
 \mathbb{P}(|S_n| \geq c\sqrt{n}) \leq \frac{\mathbb{E}|S_n|}{c\sqrt{n}} \leq \frac{1}{c}.
 \]

Tail bounds from higher-order moments

- **Chebyshev’s inequality**: for any \(t \geq 0 \),
 \[
 \mathbb{P}(|X - \mathbb{E}(X)| \geq t) \leq \frac{\text{var}(X)}{t^2}.
 \]

 - Proof: Apply Markov’s inequality to \((X - \mathbb{E}(X))^2\).

 - Application to symmetric random walk:
 \[
 \mathbb{P}(|S_n| \geq c\sqrt{n}) \leq \frac{\text{var}(S_n)}{c^2n} \leq \frac{1}{c^2}.
 \]

 (Improvement over \(1/c\) from Markov’s.)

 - Further improvements using higher-order moments.
Chernoff bounds

- Use all moments simultaneously to obtain tail bound.
- **Moment generating function (mgf):** \(M_X : \mathbb{R} \to \mathbb{R} \cup \{+\infty\} \), defined by
 \[
 M_X(\lambda) := \mathbb{E}\exp(\lambda X) = 1 + \lambda \mathbb{E}(X) + \frac{\lambda^2}{2} \mathbb{E}(X^2) + \frac{\lambda^3}{3!} \mathbb{E}(X^3) + \cdots
 \]
- If \(M_X(\lambda) \) is finite for some \(\lambda_1 < 0 \) and \(\lambda_2 > 0 \), then:
 - \(\mathbb{E}(X^p) \) is finite for all \(p \in \mathbb{N} \).
 - Graph of \(M_X \) on \([\lambda_1, \lambda_2]\) determines the distribution of \(X \).
- Often use logarithm of \(M_X \) (a.k.a. *cumulant generating function or log mgf*):
 \[
 \psi_X(\lambda) := \ln M_X(\lambda).
 \]

Facts about log mgf

- \(\psi_X(0) = 0 \)
- \(\psi_{aX + b}(\lambda) = \psi_X(a\lambda) + b\lambda \)
- If \(X_1, X_2, \ldots, X_n \) are independent, and \(\psi_{X_i}(\lambda) \) is finite for each \(i \), then
 \[
 \psi_{\sum_{i=1}^n X_i}(\lambda) = \sum_{i=1}^n \psi_{X_i}(\lambda).
 \]
- If \(\psi_X \) is finite on interval \((\lambda_1, \lambda_2)\) for some \(\lambda_1 < 0 \) and \(\lambda_2 > 0 \), then it is infinitely differentiable on the same (open) interval.
Example of (log) mgfs

- $X \sim \text{Poi}(\mu)$ (Poisson):
 \[P(X = k) = \frac{e^{-\mu} \mu^k}{k!}, \quad k \in \mathbb{Z}_+ . \]
 - $E(X) = \mu$, $\text{var}(X) = \mu$
 - $M_X(\lambda) = \sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^k}{k!} e^{\lambda k} = \ldots = e^{\mu(e^\lambda - 1)}$
 - $\psi_X(\lambda) = \mu(e^\lambda - 1)$
 - $\psi_{X-\mu}(\lambda) = \mu(e^\lambda - \lambda - 1)$
 - For $\lambda \approx 0$, $\psi_{X-\mu}(\lambda) \approx \mu \lambda^2/2$.

- $X \sim \text{N}(\mu, \sigma^2)$ (Normal)
 - $E(X) = \mu$, $\text{var}(X) = \sigma^2$
 - $M_X(\lambda) = \int e^{\lambda x} \frac{1}{\sqrt{2\pi} \sigma^2} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx = \ldots = e^{\mu \lambda + \sigma^2 \lambda^2/2}$.
 - $\psi_{X-\mu}(\lambda) = \sigma^2 \lambda^2/2$.

Cramer-Chernoff inequality

- For any $t \in \mathbb{R}$,
 \[P(X \geq t) \leq \exp\left(-\sup_{\lambda \geq 0} \{ t\lambda - \psi_X(\lambda) \} \right) . \]
 - Proof: apply Markov’s inequality to $\exp(\lambda X)$,
 \[P(X \geq t) = P(\exp(\lambda X) \geq \exp(\lambda t)) \leq \frac{E \exp(\lambda X)}{\exp(\lambda t)} , \]
 and then “optimize” the choice of $\lambda \geq 0$.
 - For any $t \geq E(X)$,
 \[P(X \geq t) \leq \exp\left(-\sup_{\lambda \in \mathbb{R}} \{ t\lambda - \psi_X(\lambda) \} \right) . \]
 - “Proof”: when $t \geq E(X)$, the optimal λ is always ≥ 0.
Fenchel conjugate

- Fenchel conjugate of $f: \mathbb{R} \rightarrow \mathbb{R}$:
 \[
 f^*(t) := \sup_{\lambda \in \mathbb{R}} \{ t\lambda - f(\lambda) \}.
 \]

 - E.g., $f(\lambda) = \lambda^2/2$ has $f^*(t) = t^2/2$.
 - If f is bounded above by a quadratic ("strongly smooth"), then f^* is bounded below by a quadratic ("strongly convex").

- Fenchel conjugate f^* is max of affine functions, hence convex.
- Cramer-Chernoff inequality: For any $t \geq \mathbb{E}(X)$,
 \[
 \mathbb{P}(X \geq t) \leq \exp(-\psi^*_X(t)).
 \]

Normal tail bound

- $\mathcal{N}(\mu, \sigma^2)$ log mgf $\psi_{X-\mu}(\lambda) = \sigma^2\lambda^2/2$ has
 \[
 \psi^*_{X-\mu}(t) = t^2/(2\sigma^2).
 \]

 - $\mathbb{P}(X \geq \mu + t) \leq \exp(-t^2/(2\sigma^2)).$
 - With probability at least $1 - \delta$,
 \[
 X \leq \mu + \sqrt{2\sigma^2 \ln(1/\delta)}.
 \]
Subgaussian random variables

- Many random variables have log mgf $\psi_{X - \mathbb{E}(X)}(\lambda)$ upper-bounded by that of $N(0, \nu)$ for some $\nu > 0$, i.e.,
 \[\psi_{X - \mathbb{E}(X)}(\lambda) \leq \nu \lambda^2 / 2. \]

 - Such random variables are called ν-subgaussian (or subgaussian with variance proxy ν).
 - Hence,
 \[\psi^*_{X - \mathbb{E}(X)}(t) \geq t^2 / (2\nu). \]
 - Example: Rademacher random variable is 1-subgaussian.

- If X_1, X_2, \ldots, X_n are independent, and each X_i is ν_i-subgaussian, then $S := \sum_{i=1}^n X_i$ is subgaussian with variance proxy $\nu := \sum_{i=1}^n \nu_i$.
 - Get tail bound for S as before.

Application to symmetric random walk

- S_n is subgaussian with variance proxy n, so
 \[\mathbb{P}(S_n \geq t) \leq \exp(-t^2/(2n)). \]
- Using a union bound,
 \[\mathbb{P}(|S_n| \geq c\sqrt{n}) \leq 2 \exp(-c^2/2). \]
 - Improvement over $1/c$ from Markov’s and $1/c^2$ from Chebyshev’s (except when c is very small).
Hoeffding’s inequality

- Suppose \(X \) is \([0, 1]\)-valued r.v. with \(\mathbb{E}(X) = \mu \), and \(Y \) is \(\{0, 1\}\)-valued r.v. with \(\mathbb{E}(Y) = \mu \). Then

\[
\psi_{X-\mu}(\lambda) \leq \psi_{Y-\mu}(\lambda) \leq \frac{\lambda^2}{8} = \frac{1}{2} \cdot \frac{\lambda^2}{4}.
\]

- “Proof”: calculus...

- So \([a, b]\)-valued random variables are \((b-a)^2/4\)-subgaussian.
 - E.g., \([-1, +1]\)-valued random variables are 1-subgaussian.

- Tail bound for (sums of) such random variables also called Hoeffding’s inequality.

Poisson tail bound

- (Centered) \(\text{Poi}(\mu) \) log mgf \(\psi_{X-\mu}(\lambda) = \mu(e^\lambda - \lambda - 1) \) has

\[
\psi^*_{X-\mu}(t) = \mu \cdot h(t/\mu),
\]

where \(h(x) := (1 + x) \ln(1 + x) - x \).

- Interpretable approximation of \(h \):

\[
h(x) \geq \frac{x^2}{2(1 + x/3)},
\]

so

\[
\mathbb{P}(X \geq \mu + t) \leq \exp(-\mu \cdot h(t/\mu)) \leq \exp\left(-\frac{t^2}{2(\mu + t/3)} \right).
\]

- With probability at least \(1 - \delta \),

\[
X \leq \mu + \sqrt{2\mu \ln(1/\delta)} + \ln(1/\delta)/3.
\]
Biased random walk

- Suppose $P(X_t = -1) = \frac{1-\gamma}{2}$ and $P(X_t = 1) = \frac{1+\gamma}{2}$.
 - Extreme cases: $\gamma = 1$ or $\gamma = -1$. Completely deterministic!
 - For γ close to 1 or -1, should also expect better concentration around the mean.
- Similar to Bin(n, p) for p close to zero or one (i.e., tossing a very biased coin n times).
 - Variance is small compared to maximal range.

Using variance information

- Let X satisfy $X - E(X) \leq 1$ and $\text{var}(X) \leq \nu$. For any $\lambda \geq 0$,
 \[
 \psi_{X - E(X)}(\lambda) \leq \nu(e^\lambda - \lambda - 1).
 \]
 - “Proof”: exploit monotonicity of $x \mapsto (e^x - x - 1)/x^2$.
 - $\psi_{X - E(X)} \leq \psi_{\tilde{X} - E(\tilde{X})}$ on \mathbb{R}_+ for $\tilde{X} \sim \text{Poi}(\nu)$.
- If X_1, X_2, \ldots, X_n are independent, and each $X_i - E(X_i) \leq 1$, then log mgf of $S := \sum_{i=1}^n X_i$ is bounded above by log mgf of $\text{Poi}(\mu)$ on \mathbb{R}_+, where $\mu := \sum_{i=1}^n \text{var}(X_i)$.
 - Get tail bound for S as before; called Bennett’s inequality or Bernstein’s inequality.
Poisson approximation

- $S = \sum_{i=1}^{n} X_i$ where X_1, X_2, \ldots, X_n are iid $\text{Bern}(p)$.
- Using Bennett’s inequality:

$$\mathbb{P}(S \geq np + t) \leq \exp \left(-np(1-p) \cdot h \left(\frac{t}{np(1-p)} \right) \right).$$

- Poisson heuristic: if $p = O(1/n)$, then $\text{Bin}(n, p) \approx \text{Poi}(np)$.
- $\text{Poi}(np)$ tail bound:

$$\mathbb{P}(S \geq np + t) \leq \exp \left(-np \cdot h \left(\frac{t}{np} \right) \right).$$

- So for $p = O(1/n)$, with probability at least $1 - \delta$,

$$\frac{S}{n} - p \leq O \left(\frac{\log(1/\delta)}{n} \right).$$

Why does this work?

- log mgf bounded by that of Gaussian for λ around zero:

$$X \sim \text{Poi}(\mu) : \psi_{X-\mu}(\lambda) = \mu(e^\lambda - \lambda - 1),$$

$$X \sim \text{Bern}(p) : \psi_{X-p}(\lambda) \leq p(1-p)(e^\lambda - \lambda - 1).$$

- Another example:

$$X \sim \text{N}(0, 1) : \psi_{X^2-1}(\lambda) = -\frac{1}{2} \ln(1 - 2\lambda) - \lambda.$$

- In above cases, there exist $\nu, c \geq 0$ such that, for all $\lambda \in [0, 1/c)$,

$$\psi_{X-E(X)}(\lambda) \leq \frac{\nu \lambda^2}{2} \cdot \frac{1}{1 - c\lambda}.$$

- Such random variables are called (ν, c)-subgamma or subgamma with variance proxy ν and scale factor c.
- If $(1 - c\lambda)^{-1}$ factor omitted, then called (ν, c)-subexponential.
Fenchel conjugate of log mgf for subexponential

- For \((v, c)\)-subexponential random variable \(X\):
 \[
 \psi_{X - \mathbb{E}(X)}^*(t) = \sup_{\lambda \in \mathbb{R}} \left\{ t\lambda - \psi_{X - \mathbb{E}(X)}(\lambda) \right\} \geq \sup_{\lambda \in [0, 1/c]} \left\{ t\lambda - v\lambda^2/2 \right\}.
 \]

- If \(t < v/c\), then can plug-in \(\lambda := t/v\) to obtain
 \[
 \psi_{X - \mathbb{E}(X)}^*(t) \geq t^2/(2v).
 \]

- If \(t \geq v/c\), then \(t\lambda - v\lambda^2/2\) is increasing for \(\lambda \in [0, 1/c]\), so plug-in \(\lambda := 1/c\) to obtain
 \[
 \psi_{X - \mathbb{E}(X)}^*(t) \geq t/(2c).
 \]

- Conclusion:
 \[
 \psi_{X - \mathbb{E}(X)}^*(t) \geq \min \left\{ \frac{t^2}{2v}, \frac{t}{2c} \right\}.
 \]

Chi-squared distribution

- If \(X_1, X_2, \ldots, X_k\) are iid \(N(0, 1)\), then
 \(S := \sum_{i=1}^k X_i^2 \sim \chi^2(k)\) (chi-squared with \(k\) degrees-of-freedom).

- For \(\lambda \in [0, 1/2]\),
 \[
 \psi_{X_1^2 - \mathbb{E}(X_1^2)}(\lambda) = -\frac{1}{2} \ln(1 - 2\lambda) - \lambda = \frac{1}{2} \sum_{j=2}^\infty \frac{(2\lambda)^j}{j} \leq \frac{2\lambda^2}{2} \cdot \frac{1}{1 - 2\lambda},
 \]
 so \(X_1^2\) is \((2, 2)\)-subgamma; also \((4, 4)\)-subexponential.

- Consequently, \(S\) is \((4k, 4)\)-subexponential.

- Tail bound using subexponential property:
 \[
 \mathbb{P}(S - k \geq t) \leq \exp\left(-\min \left\{ \frac{t^2}{k}, \frac{t}{2} \right\} / 8\right).
 \]

- With probability at least \(1 - \delta\),
 \[
 S \leq k + \max \left\{ \sqrt{8k \ln(1/\delta)}, 8\ln(1/\delta) \right\}.
 \]

- A tighter analysis gets a bound of \(k + 2\sqrt{k \ln(1/\delta)} + 2\ln(1/\delta)\).
Subgaussian moments

Suppose X is ν-subgaussian and $\mathbb{E}(X) = 0$.

- For any $k \in \mathbb{N}$,
 $$\mathbb{E} |X|^k \leq (2\nu)^{k/2} k \Gamma(k/2).$$

- **Proof:**
 \[
 \mathbb{E} |X|^k = \int_0^\infty \mathbb{P}(|X|^k \geq t) \, dt \leq \int_0^\infty 2e^{-t^2/(2\nu)} \, dt \ldots
 \]

- X^2 is $(128\nu^2, 8\nu)$-subexponential.

- **Proof:** Use Taylor series to express $\psi_{X^2 - \mathbb{E}(X^2)}$ in terms of even moments of X.

27