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Orthogonal tensor decompositions
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Moments of hidden variable models

I Many hidden variable models have observable moments
(perhaps after transformation) of the form

k∑

i=1
wi · µ⊗p

i .

I Jennrich’s algorithm: uses S (p = 2) and T (p = 3) to recover
parameters (assuming S := span{µi}ki=1 has dimension k).
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Orthogonality

I Suppose all wi > 0 and dim(S) = k.
I Then S is psd and has rank k.
I S defines inner product over S in which {√wiµi}ki=1 are

orthonormal:

〈x, y〉S† := x>S†y .

〈√wiµi ,
√wjµj〉S† =




1 if i = j ,
0 if i 6= j .
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Whitening

I Can write S† := W W> with rank k matrix W ∈ Rd×k called
“whitening transformation”:

S(W ,W ) = W>SW = I ,

so {W>(√wiµi )}ki=1 is ONB in Rk .
I Can also apply W to higher-order tensors, e.g.,

T (W ,W ,W ) =
k∑

i=1
wi · (W>µi )⊗3

=
k∑

i=1

1√wi
· (W>(√wiµi ))⊗3 .
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Odeco tensors

I (Symmetric) orthogonally decomposable (odeco) tensors:

k∑

i=1
λiv⊗p

i

where λi > 0 and {v i}ki=1 is ONB.
I (Assume positivity of λi for simplicity.)

I Is the decomposition of an odeco tensor unique?
I p = 2: no
I p ≥ 3: yes

I Variational claim: for p ≥ 3, isolated local maximizers of
degree-p homogeneous polynomial fT (x) := T (x, x, . . . , x)
over Bk are {v i}ki=1.
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Variational characterization
I Claim: for p ≥ 3, isolated local maximizers of

fT (x) := T (x, x, . . . , x) over Bk are {v i}ki=1.
I Observation: by orthogonality,

fT (v j) =
k∑

i=1
λi〈v j , v i〉p = λj .

I What about other vectors?
I May as well think of v i as i-th coordinate basis vector.

max
x∈Rk

k∑

i=1
λixp

i s.t.
k∑

i=1
x2

i ≤ 1 .

I If both x1 and x2 are non-zero, then

λ1xp
1 + λ2xp

2 < λ1x2
1 + λ2x2

2 ≤ max{λ1, λ2} .
I Hence, better to only have a single non-zero entry.
I I.e., better to have x = v i for some i .
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Tensor power method
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Optimality condition

max
x∈Rk

k∑

i=1
λi〈x, v i〉p s.t.

k∑

i=1
x2

i ≤ 1 .

I Lagrangian:

L(x, λ) :=
k∑

i=1
λi〈x, v i〉p −

p
2λ(‖x‖22 − 1) .

I First-order optimality condition:

p
k∑

i=1
λi〈x, v i〉p−1v i − pλx = 0 .

I I.e.,

T (x, . . . , x︸ ︷︷ ︸
p−1 times

, I) =
k∑

i=1
λi〈x, v i〉p−1v i = λx .

I Maximizer must be an “eigenvector” of degree-(p−1) map.
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Fixed-point iteration algorithm

I Consider map from first-order condition:

φT (x) := T (x, . . . , x︸ ︷︷ ︸
p−1 times

, I) .

I Goal: find x ∈ Sk−1 that is fixed under

x 7→ φT (x)
‖φT (x)‖2

.

I “Tensor power method” (De Lathauwer et al, 2000):
I Repeatedly apply φT to initial x(0) ∈ Sk−1 (and re-normalize).

I Question: Does it find the v i?
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Example
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Figure 1: 〈x(0), v i〉 for i = 1, 2, . . . , 1024
11

Example
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Figure 2: 〈x(1), v i〉 for i = 1, 2, . . . , 1024
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Example
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Figure 3: 〈x(2), v i〉 for i = 1, 2, . . . , 1024
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Example
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Figure 4: 〈x(3), v i〉 for i = 1, 2, . . . , 1024
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Example
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Figure 5: 〈x(4), v i〉 for i = 1, 2, . . . , 1024
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Example
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Figure 6: 〈x(5), v i〉 for i = 1, 2, . . . , 1024
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Review: matrix power method
I Tensor power method for p = 2 is “matrix power method”:

x(t) := M(I, x(t−1)) = Mx(t−1) .

I If λ1 > λ2, and x(0) not orthogonal to v1, then angle θ(t)

between x(t) and v1 decreases to zero at linear rate.
I Write ci := 〈x(0), v i〉 for i = 1, 2, . . . , k, so

x(0) = c1v1 + c2v2 + · · ·+ ckvk ,

x(t) = λt
1c1v1 + λt

2c2v2 + · · ·+ λt
kckvk .

I cos2(θ(t)):

〈x(t), v1〉2
‖x(t)‖2

2
= c2

1λ
2t
1∑k

i=1(ciλt
i )2
≥ 1

1 +
(

λ2
λ1

)2t 1−c2
1

c2
1

.

I p = 2 behavior very different from p ≥ 3.
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Tensor power method (p = 3)
I Re-number components so that

λ1|c1| ≥ λ2|c2| ≥ · · · .

I Then

x(1) =
k∑

i=1
λi〈x(0), v i〉2v i =

k∑

i=1
λic2

i v i .

I Coefficient ci in x(0) is squared in x(1).
I If λ1|c1| > λ2|c2|, then angle between x(t) and v1 decreases to

zero at quadratic rate:

〈x(t), v1〉2
‖x(t)‖22

≥ 1

1 +
(

λ2|c2|
λ1|c1|

)2t+1 ∑k
i=2

(
λ1
λi

)2 .

I Note: which vector we called v1 depends on x(0)!
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Initialization of tensor power method

I Convergence of tensor power method requires gap between
largest and second-largest λi |〈x(0), v i〉|p−2.

I Bad initialization:
I Suppose T =

∑k
i=1 v⊗p

i and x(0) = v1 + v2:

φT (x(0)) = 〈x(0), v1〉pv1 + 〈x(0), v2〉pv2

= v1 + v2 .

I But bad initialization points comprise measure-zero set.
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Recovering all components
I Power method with T = ∑k

i=1 λiv⊗p
i returns some v i .

I Can also get λi via λi = T (v i , v i , . . . , v i ).
I What about other components j 6= i?

I “Deflation”: replace T with T ′ := T − λiv⊗p
i so that

T ′ =
∑

j 6=i
λjv⊗p

i .

I Can do this “inside” power method:

T ′(x, . . . , x, I) = T (x, . . . , x, I)− λi〈x, v i〉p−1v i .

I Implicitly tries to make power method (with T ′) converge to
something orthogonal to v i .

I Caveat: don’t have v i and λi exactly, but only up to some
small error, e.g.,

‖v̂ i − v i‖2 ≤ ε , |λ̂i − λi | ≤ ε′ .
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Error analysis
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Nearly odeco tensors

I Suppose we have T̂ = T + E for some odeco T = ∑k
i=1 λiv⊗p

i
and (symmetric) “error tensor” E with ‖E‖2 ≤ ε, i.e.,

max
u∈Sk−1

|E(u,u, . . . ,u)| ≤ ε .

I Matrix case (p = 2): (λ1 ≥ λ2 ≥ · · ·)
I Top eigenvalue/eigenvector (λ̂, v̂) of T̂ .
I λ̂ approximates λ1:

|λ̂− λ1| ≤ ε .

I But need ε < λ1 − λ2 for v̂ to approximate v1 (Davis-Kahan).
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Nearly odeco tensors (p ≥ 3)
I Higher-order case (p ≥ 3):

I Maximum of fT̂ approximates some λi , i.e.,

| max
u∈Sk−1

T̂ (u,u, . . . ,u)− λi | ≤ ε .

I Maximizers v̂ of fT̂ also approximate some λi , i.e.,

‖v̂ − v i‖2 ≤ O
(
ε

λi
+
(
ε

λi

)2)
.

I Output of power method: depends on initialization

x(0) = c1v1 + c2v2 + · · ·+ ckvk .

I E.g., if all λi ∈
[
Ω(1),O(1)

]
, then need maxi c2

i � ε to get

|λ̂− λi | ≤ O(ε) , ‖v̂ − v i‖2 ≤ O(ε)

for some component i , after O(log(k) + log log(1/ε)) iterations.
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Error from deflation

I Since (λ̂, v̂) obtained from T̂ = T + E is not exactly (λi , v i )
for any component i of T , “deflation” introduces some error:

T̂ ′ := T̂ − λ̂v̂⊗p

=
k∑

j=1
λjv⊗p

j + E − λ̂v̂⊗p

=
∑

j 6=i
λjv⊗p

j + E +
(
λiv⊗p

i − λ̂v̂⊗p
)

=: T ′ + E + E i .

I Danger: ‖E i‖2 can be as large as ‖E‖2.
I So “error” has doubled?
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Analysis of deflation error
I (For simplicity, assume all λi = 1.)
I Deflation error: E i = v⊗p

i − v̂⊗p

I All we know is that ‖v̂ − v i‖2 ≤ O(ε).
I Consider a unit vector u orthogonal to v i :

‖φE i (u)‖2 = ‖〈u, v i〉p−1v1 − 〈u, v̂〉p−1v̂‖2
= ‖〈u, v̂〉p−1v̂‖2
= |〈u, v̂ − v i〉|p−1

≤ O(εp−1) .
I Therefore, for such u,

‖φE+E i (u)‖2 ≤ (1 + O(εp−2))ε .

I When p ≥ 3, errors due to deflation have lower-order effect
on ability to approximate remaining components.

I Not true for p = 2.
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Recap

I High-order moments
I Get parameter identifiability.
I But for very high-order moments, estimation may be difficult.

I Higher-than-order-2 moments in high-dimensions
I Can still get parameter identifiability in many cases.
I Arrangement in higher-order tensor facilitates

reasoning/computation.
I Higher-than-order-2 tensors

I Most computational problems (that were easy for matrices)
become hard.

I But when there is a lot of structure, some computational issues
are better than in matrix case!

26


