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Moments of hidden variable models

» Many hidden variable models have observable moments
(perhaps after transformation) of the form

k

ZW,"/,L(?p.
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» Jennrich's algorithm: uses S (p =2) and T (p = 3) to recover
parameters (assuming S := span{u;}¥_; has dimension k).

Orthogonality

» Suppose all w; > 0 and dim(S) = k.
» Then S is psd and has rank k.

> S defines inner product over S in which {,/w;ju;}%_; are
orthonormal.

(x,¥)st = x'Sly.
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Whitening

» Can write ST := WW?T with rank k matrix W € R9*k called
“whitening transformation”:

S(W,W) = W'SW = I,
so {W"(y/wjp;)}5 ; is ONB in R,

» Can also apply W to higher-order tensors, e.g.,

k
T(W, W, W) = ZW;-(WTui)®3

i=1
k
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Odeco tensors

» (Symmetric) orthogonally decomposable (odeco) tensors:

k

®p
Z AiV;
i=1
where \; > 0 and {v;}%_; is ONB.
» (Assume positivity of \; for simplicity.)
» Is the decomposition of an odeco tensor unique?
» p=2: no
» p>3: yes

» Variational claim: for p > 3, isolated local maximizers of
degree-p homogeneous polynomial fr(x) := T(x, x,...,x)
over BX are {v;}k_;.




Variational characterization

» Claim: for p > 3, isolated local maximizers of
fr(x) := T(x,x,...,x) over BX are {v;}}_,.
» Observation: by orthogonality,

k
fT(VJ') = Z)\,‘<Vj,v,'>p = )\J'.
i=1

» What about other vectors?

» May as well think of v; as i-th coordinate basis vector.

k

k
max ¥ Aix st > X7 < 1.
xeRN T i=1

» |f both x; and x> are non-zero, then

)\1Xf + )\2X2p < )\1X12 + )\2X22 < max{)\l,)\g}.

» Hence, better to only have a single non-zero entry.
» |.e., better to have x = v; for some |.

Tensor power method




Optimality condition

k k
max » Ai(x,vj)P s.t. x> < 1.
x€ERK ] < > ; b
» Lagrangian:
k
p

L(x, ) = D Xilx, vi)P — EA(\IXHE —1).

i=1

» First-order optimality condition:
k
P> Ailx,vi)P"lvi —pAx = 0.
i=1

> |e.,

T (x x| Ai{x, vi)P lyv, = \x.
(.o x0) = Z

p—1 times

» Maximizer must be an "eigenvector” of degree-(p—1) map.

Fixed-point iteration algorithm

» Consider map from first-order condition:

or(x) = T(x,....x,1I).

p—1 times
» Goal: find x € Sk~1 that is fixed under

¢1(x)
lor(x)[l2

» “Tensor power method” (De Lathauwer et al, 2000):

X +—

> Repeatedly apply ¢ to initial x(0) € S~ (and re-normalize).

» Question: Does it find the v;?
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Figure 1: (x(O v;) for i=1,2,...,1024
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Figure 2: (x() v;) for i =1,2,...,1024

1000




Example

oL |.‘|||.|..| L

| |.| |\‘ JII 1‘ IH| |‘
400 600

‘ I.LI.I I.‘. -
800 1000

1
200

Figure 3: (x(® v;) for i=1,2,...,1024

Example

Figure 4: (x®) v;) for i =1,2,...,1024
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Figure 5: (x(*), v;) for i =1,2,...,1024
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Figure 6: (x®) v;) for i =1,2,...,1024




Review: matrix power method
» Tensor power method for p = 2 is “matrix power method":
x®) = M, xE) = mx(ED

» If A1 > X\, and x(©) not orthogonal to v, then angle o(t)
between x(t) and vy decreases to zero at linear rate.

» Write ¢; := (x(O), v;) for i =1,2,...,k, so

X(O) = C1Vi+ CVy+ -+ CxVg,
x() — )\iclvl+)\£C2V2—|-"'+)\;<Ckvk-
> cos?(0(1)):
<x(t)’ V1>2 o C]?)\%t 1
x®O2 ~ ok 0o = 2ty
2 Z,-:l(ciAi) 1+ (&) _2(:1
)\1 C1

» p = 2 behavior very different from p > 3.

Tensor power method (p = 3)

» Re-number components so that
Atlal > Az

» Then

x = Z)\ x(o) Vi) Z)\c v;.

» Coefficient ¢; in x(9 is squared in x1).

v, decreases to
zero at quadratic rate:

(x(t) yq)? - 1
X(t)2 — \ 2t+1 K A\ 2
A )R )

» Note: which vector we called v; depends on x(0!




Initialization of tensor power method

» Convergence of tensor power method requires gap between
largest and second-largest \;[(x(9), v;)[P~2.
» Bad initialization:

» Suppose T = Zle vZP and x(0 = v; + vy

¢T(X(O)) - <x(0)’ vi)Pvy + <x(0)’ v2)Pv,

= vy +Vvs.

» But bad initialization points comprise measure-zero set.

Recovering all components
> Power method with T = S5, )\,-v(?p returns some v;.
» Can also get A\; via \; = T (v, v;,...,v;).
» What about other components j # i?
> "Deflation”: replace T with T":= T — \;v¥? so that
T =) \viP.
J#i
» Can do this “inside” power method:
T (x,...,x, 1) = T(x,....,x, 1) = X\i{x,v;)*"1v;.

» Implicitly tries to make power method (with T') converge to
something orthogonal to v;.

» Caveat: don't have v; and \; exactly, but only up to some
small error, e.g.,

Vi —villa < ¢, |3\i_)\i| < ¢.




Error analysis

Nearly odeco tensors

> Suppose we have T = T + E for some odeco T = SE L AvEP
and (symmetric) “error tensor” E with ||E|]2 <, i.e.,

ugga}()il |E(u,u,...,u)| < €.

» Matrix case (p =2): (A1 > A2 >--+)

> Top eigenvalue/eigenvector (X, ¥) of T
» )\ approximates A;p:
’)\ - )\1| S €.

» But need € < A\; — A\, for ¥ to approximate v; (Davis-Kahan).




Nearly odeco tensors (p > 3)
» Higher-order case (p > 3):

» Maximum of f? approximates some \;, i.e.,

max, T(u,u,...,u)—\| < e.

» Maximizers v of f? also approximate some J;, i.e.,

2
[V —villa < O<>\i’+<§l) ) :

» Output of power method: depends on initialization
X0 = qvitavat- o+ v
» E.g., if all \; € [Q(1), O(1)], then need max; c? > € to get
A=X < 0), [#—villa < O(e)

for some component i, after O(log(k) + loglog(1/¢)) iterations.

Error from deflation

> Since (\, ) obtained from T = T + E is not exactly (), v;)
for any component i of T, “deflation” introduces some error:

~/ ~

» Danger: ||E;|[> can be as large as ||E]||>.

» So “error” has doubled?




Analysis of deflation error

>
>

(For simplicity, assume all \; = 1.)
Deflation error: E; = viP — ¢®P
» All we know is that ||V — v;|]2 < O(e).
Consider a unit vector u orthogonal to v;:
loe ()2 = [[{u, vi)P v — (u, #)P710 )2

= |[{u, 9)P70]
= [{u, ¥ —vy|P™

< 0O(eP71).

Therefore, for such wu,

loe+g,(u)ll2 < (14 O(P~))e.

When p > 3, errors due to deflation have lower-order effect
on ability to approximate remaining components.

» Not true for p = 2.

Recap

High-order moments

» Get parameter identifiability.
» But for very high-order moments, estimation may be difficult.

Higher-than-order-2 moments in high-dimensions

» Can still get parameter identifiability in many cases.
» Arrangement in higher-order tensor facilitates
reasoning/computation.

Higher-than-order-2 tensors

» Most computational problems (that were easy for matrices)
become hard.

» But when there is a lot of structure, some computational issues
are better than in matrix case!




