Overview

Daniel Hsu

COMS 4772

About COMS 4772

▶ “Advanced machine learning”
 ▶ But actually: “machine learning theory”
▶ Website:
 http://www.cs.columbia.edu/~djhsu/coms4772-f16/
 ▶ Course information, policies, academic rules of conduct, etc.
▶ Courseworks, Piazza: links on website
About you

- Satisfy all prerequisites:
 - “machine learning”
 - multivariate calculus
 - linear algebra
 - probability theory
 - algorithms
 - mathematical maturity
 - can read/write mathematical arguments, derivations, and proofs

- You have until next lecture to “page in” these topics.
 - See Homework 0

About you (relative to this class)

- Read papers/notes (posted on website)
- Attend lectures (mostly at blackboard, sometimes slides)
- Solve problem sets (~4)
 - Write them up in \LaTeX{} or something of similar quality
- Work on theoretical research project
 - E.g., new, interesting theoretical result
 - E.g., simplify an existing, complex result in a non-trivial way
 - E.g., high quality survey paper that unifies several papers
 - Cannot “just” implement an algorithm and run some experiments
 - Project report / presentation (possibly a poster session) at end of semester (maybe during “final exam” time)
- Abide by course policies, academic rules of conduct
 - See website
 - Violators reported to the Dean’s office, get failing grade for assignment and/or course
About the course staff

▶ Instructor: Prof. Daniel Hsu
 ▶ Website: http://www.cs.columbia.edu/~djhsu/
 ▶ Research in algorithmic statistics, machine learning
▶ Course assistants: Rob and Mark

About COMS 4772 (again)

▶ Techniques for designing/analyzing machine learning algorithms
 ▶ Focus on simple statistical models of data
 ▶ E.g., “subpopulations” in genetic study panel
 ▶ E.g., “communities” in a social network
 ▶ E.g., “topics” in a corpus of documents
 ▶ Many omissions (e.g., PAC learning, Bayesian analysis)
▶ Role of theoretical analysis in machine learning
 ▶ Beyond worst-case analysis: also have model of “input” (data)
 ▶ Best case analysis, but assumptions usually violated in practice
 ▶ Often lags practice, but not always (e.g., boosting, k-means++)
 ▶ Framework for reasoning about machine learning algorithms
 ▶ Suggest new algorithmic techniques
1. High-dimensional data
 ▶ concentration of measure, random linear maps
 ▶ applications: least squares regression, \(k \)-means clustering, Gaussian mixtures

2. Low-rank matrix approximation
 ▶ PCA, SVD, NMF, power iteration
 ▶ applications: Gaussian mixtures, \(k \)-means clustering, planted partition models, topic models

3. Higher-order interactions
 ▶ higher-order tensors, tensor decompositions, power iteration
 ▶ applications: Gaussian mixtures, ICA, latent Dirichlet allocation