Topic 5: Principal component analysis

5.1 Covariance matrices

Suppose we are interested in a population whose members are represented by vectors in \mathbb{R}^d. We model the population as a probability distribution \mathbb{P} over \mathbb{R}^d, and let X be a random vector with distribution \mathbb{P}. The mean of X is the “center of mass” of \mathbb{P}. The covariance of X is also a kind of “center of mass”, but it turns out to reveal quite a lot of other information.

Note: if we have a finite collection of data points $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, then it is common to arrange these vectors as rows of a matrix $A \in \mathbb{R}^{n \times d}$. In this case, we can think of \mathbb{P} as the uniform distribution over the n points x_1, x_2, \ldots, x_n. The mean of $X \sim \mathbb{P}$ can be written as

$$
E(X) = \frac{1}{n} A^\top 1,
$$

and the covariance of X is

$$
\text{cov}(X) = \frac{1}{n} A^\top A - \left(\frac{1}{n} A^\top 1 \right) \left(\frac{1}{n} A^\top 1 \right)^\top = \frac{1}{n} \tilde{A}^\top \tilde{A}
$$

where $\tilde{A} = A - (1/n) 11^\top A$. We often call these the empirical mean and empirical covariance of the data x_1, x_2, \ldots, x_n.

Covariance matrices are always symmetric by definition. Moreover, they are always positive semidefinite, since for any non-zero $z \in \mathbb{R}^d$,

$$
z^\top \text{cov}(X) z = z^\top \mathbb{E}[(X - E(X))(X - E(X))^\top] z = \mathbb{E}[(z, X - E(X))^2] \geq 0.
$$

This also shows that for any unit vector u, the variance of X in direction u is

$$
\text{var}(\langle u, X \rangle) = \mathbb{E}[\langle u, X - E(X) \rangle^2] = u^\top \text{cov}(X) u.
$$

Consider the following question: in what direction does X have the highest variance? It turns out this is given by an eigenvector corresponding to the largest eigenvalue of $\text{cov}(X)$. This follows the following variational characterization of eigenvalues of symmetric matrices.

Theorem 5.1. Let $M \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors v_1, v_2, \ldots, v_d. Then

$$
\max_{u \neq 0} \frac{u^\top Mu}{u^\top u} = \lambda_1,
\min_{u \neq 0} \frac{u^\top Mu}{u^\top u} = \lambda_d.
$$

These are achieved by v_1 and v_d, respectively. (The ratio $u^\top Mu / u^\top u$ is called the Rayleigh quotient associated with M in direction u.)
Recall, the trace linear map k of value of variance of X. Then

Fact 5.1. For any λ

Corollary 5.1. Let v_1 be a unit-length eigenvector of $\text{cov}(X)$ corresponding to the largest eigenvalue of $\text{cov}(X)$. Then

$$
\text{var}(\langle v_1, X \rangle) = \max_{\mathbf{u} \in S^{d-1}} \text{var}(\langle \mathbf{u}, X \rangle).
$$

Now suppose we are interested in the k-dimensional subspace of \mathbb{R}^d that captures the “most” variance of X. Recall that a k-dimensional subspace $W \subseteq \mathbb{R}^d$ can always be specified by a collection of k orthonormal vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \in W$. By the orthogonal projection to W, we mean the linear map

$$
\mathbf{x} \mapsto \mathbf{U}^\top \mathbf{x}, \quad \text{where } \mathbf{U} = \begin{bmatrix}
\uparrow & \uparrow & \cdots & \uparrow \\
\mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_k
\end{bmatrix} \in \mathbb{R}^{d \times k}.
$$

The covariance of $\mathbf{U}^\top \mathbf{X}$, a $k \times k$ covariance matrix, is simply given by

$$
\text{cov}(\mathbf{U}^\top \mathbf{X}) = \mathbf{U}^\top \text{cov}(\mathbf{X}) \mathbf{U}.
$$

The “total” variance in this subspace is often measured by the trace of the covariance: $\text{tr}(\text{cov}(\mathbf{U}^\top \mathbf{X}))$. Recall, the trace of a square matrix is the sum of its diagonal entries, and it is a linear function.

Fact 5.1. For any $\mathbf{U} \in \mathbb{R}^{d \times k}$, $\text{tr}(\text{cov}(\mathbf{U}^\top \mathbf{X})) = \mathbb{E} \| \mathbf{U}^\top (\mathbf{X} - \mathbb{E}(\mathbf{X})) \|^2_2$. Furthermore, if $\mathbf{U}^\top \mathbf{U} = \mathbf{I}$, then $\text{tr}(\text{cov}(\mathbf{U}^\top \mathbf{X})) = \mathbb{E} \| \mathbf{U} \|_2^2$.

Theorem 5.2. Let $\mathbf{M} \in \mathbb{R}^{d \times d}$ be a symmetric matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ and corresponding orthonormal eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d$. Then for any $k \in [d],$

$$
\max_{\mathbf{U} \in \mathbb{R}^{d \times k} : \mathbf{U}^\top \mathbf{U} = \mathbf{I}} \text{tr}(\mathbf{U}^\top \mathbf{M} \mathbf{U}) = \lambda_1 + \lambda_2 + \cdots + \lambda_k,
$$

$$
\min_{\mathbf{U} \in \mathbb{R}^{d \times k} : \mathbf{U}^\top \mathbf{U} = \mathbf{I}} \text{tr}(\mathbf{U}^\top \mathbf{M} \mathbf{U}) = \lambda_{d-k+1} + \lambda_{d-k+2} + \cdots + \lambda_d.
$$

The max is achieved by an orthogonal projection to the span of $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k$, and the min is achieved by an orthogonal projection to the span of $\mathbf{v}_{d-k+1}, \mathbf{v}_{d-k+2}, \ldots, \mathbf{v}_d$.

Proof. Let $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k$ denote the columns of \mathbf{U}. Then, writing $\mathbf{M} = \sum_{j=1}^d \lambda_j \mathbf{v}_j \mathbf{v}_j^\top$ (Theorem 4.1),

$$
\text{tr}(\mathbf{U}^\top \mathbf{M} \mathbf{U}) = \sum_{i=1}^k \mathbf{u}_i^\top \mathbf{M} \mathbf{u}_i = \sum_{i=1}^k \mathbf{u}_i^\top \left(\sum_{j=1}^d \lambda_j \mathbf{v}_j \mathbf{v}_j^\top \right) \mathbf{u}_i = \sum_{j=1}^d \lambda_j \sum_{i=1}^k \langle \mathbf{v}_j, \mathbf{u}_i \rangle^2 = \sum_{j=1}^d c_j \lambda_j
$$
where \(c_j := \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 \) for each \(j \in [d] \). We’ll show that each \(c_j \in [0, 1] \), and \(\sum_{j=1}^{d} c_j = k \).

First, it is clear that \(c_j \geq 0 \) for each \(j \in [d] \). Next, extending \(u_1, u_2, \ldots, u_k \) to an orthonormal basis \(u_1, u_2, \ldots, u_d \) for \(\mathbb{R}^d \), we have for each \(j \in [d] \),

\[
c_j = \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 \leq \sum_{i=1}^{d} \langle v_j, u_i \rangle^2 = 1.
\]

Finally, since \(v_1, v_2, \ldots, v_d \) is an orthonormal basis for \(\mathbb{R}^d \),

\[
\sum_{j=1}^{d} c_j = \sum_{j=1}^{d} \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 = \sum_{j=1}^{d} \sum_{i=1}^{k} \langle v_j, u_i \rangle^2 = \sum_{i=1}^{k} \| u_i \|_2^2 = k.
\]

The maximum value of \(\sum_{j=1}^{d} c_j \lambda_j \) over all choices of \(c_1, c_2, \ldots, c_d \in [0, 1] \) with \(\sum_{j=1}^{d} c_j = k \) is \(\lambda_1 + \lambda_2 + \cdots + \lambda_k \). This is achieved when \(c_1 = c_2 = \cdots = c_k = 1 \) and \(c_{k+1} = \cdots = c_d = 0 \), i.e., when \(\text{span}(v_1, v_2, \ldots, v_k) = \text{span}(u_1, u_2, \ldots, u_k) \). The minimum value of \(\sum_{j=1}^{d} c_j \lambda_j \) over all choices of \(c_1, c_2, \ldots, c_d \in [0, 1] \) with \(\sum_{j=1}^{d} c_j = k \) is \(\lambda_{d-k+1} + \lambda_{d-k+2} + \cdots + \lambda_d \). This is achieved when \(c_1 = \cdots = c_{d-k} = 0 \) and \(c_{d-k+1} = c_{d-k+2} = \cdots = c_d = 1 \), i.e., when \(\text{span}(v_{d-k+1}, v_{d-k+2}, \ldots, v_d) = \text{span}(u_1, u_2, \ldots, u_k) \).

We’ll refer to the \(k \) largest eigenvalues of a symmetric matrix \(M \) as the top-\(k \) eigenvalues of \(M \), and the \(k \) smallest eigenvalues as the bottom-\(k \) eigenvalues of \(M \). We analogously use the term top-\(k \) (resp., bottom-\(k \)) eigenvectors to refer to orthonormal eigenvectors corresponding to the top-\(k \) (resp., bottom-\(k \)) eigenvalues. Note that the choice of top-\(k \) (or bottom-\(k \)) eigenvectors is not necessarily unique.

Corollary 5.2. Let \(v_1, v_2, \ldots, v_k \) be top-\(k \) eigenvectors of \(\text{cov}(X) \), and let \(V_k := [v_1|v_2|\cdots|v_k] \). Then

\[
\text{tr}(\text{cov}(V_k^\top X)) = \max_{U \in \mathbb{R}^{d \times k} : U^\top U = I} \text{tr}(\text{cov}(U^\top X)).
\]

An orthogonal projection given by top-\(k \) eigenvectors of \(\text{cov}(X) \) is called a (rank-\(k \)) principal component analysis (PCA) projection. Corollary 5.2 reveals an important property of a PCA projection: it maximizes the variance captured by the subspace.

5.2 Best affine and linear subspaces

PCA has another important property: it gives an affine subspace \(A \subseteq \mathbb{R}^d \) that minimizes the expected squared distance between \(X \) and \(A \).

Recall that a \(k \)-dimensional affine subspace \(A \) is specified by a \(k \)-dimensional (linear) subspace \(W \subseteq \mathbb{R}^d \)—say, with orthonormal basis \(u_1, u_2, \ldots, u_k \)—and a displacement vector \(u_0 \in \mathbb{R}^d \):

\[
A = \{ u_0 + \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_k u_k : \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R} \}.
\]

Let \(U := [u_1|u_2|\cdots|u_k] \). Then, for any \(x \in \mathbb{R}^d \), the point in \(A \) closest to \(x \) is given by \(u_0 + UU^\top (x - u_0) \), and hence the squared distance from \(x \) to \(A \) is \(\|(I - UU^\top)(x - u_0)\|_2^2 \).

Theorem 5.3. Let \(v_1, v_2, \ldots, v_k \) be top-\(k \) eigenvectors of \(\text{cov}(X) \), let \(V_k := [v_1|v_2|\cdots|v_k] \), and \(v_0 := \mathbb{E}(X) \). Then

\[
\mathbb{E} \| (I - V_k V_k^\top) (X - v_0) \|_2^2 = \min_{U \in \mathbb{R}^{d \times k}, u_0 \in \mathbb{R}^d : U^\top U = I} \mathbb{E} \| (I - UU^\top) (X - u_0) \|_2^2.
\]
Proof. For any matrix $d \times d$ matrix M, the function $u_0 \mapsto \mathbb{E}\|M(X - u_0)\|_2^2$ is minimized when $Mu_0 = M\mathbb{E}(X)$ (Fact 5.2). Therefore, we can plug-in $\mathbb{E}(X)$ for u_0 in the minimization problem, whereupon it reduces to

$$
\min_{U \in \mathbb{R}^{d \times k} : U^TU = I} \mathbb{E}\|(I - UU^T)(X - \mathbb{E}(X))\|_2^2.
$$

The objective function is equivalent to

$$
\mathbb{E}\|(I - UU^T)(X - \mathbb{E}(X))\|_2^2 = \mathbb{E}\|X - \mathbb{E}(X)\|_2^2 - \mathbb{E}\|UU^T(X - \mathbb{E}(X))\|_2^2 = \mathbb{E}\|X - \mathbb{E}(X)\|_2^2 - \text{tr}(\text{cov}(U^TX)),
$$

where the second equality comes from Fact 5.1. Therefore, minimizing the objective is equivalent to maximizing $\text{tr}(\text{cov}(U^TX))$, which is achieved by PCA (Corollary 5.2). \qed

The proof of Theorem 5.3 depends on the following simple but useful fact.

Fact 5.2 (Bias-variance decomposition). Let Y be a random vector in \mathbb{R}^d, and $b \in \mathbb{R}^d$ be any fixed vector. Then

$$
\mathbb{E}\|Y - b\|_2^2 = \mathbb{E}\|Y - \mathbb{E}(Y)\|_2^2 + \|\mathbb{E}(Y) - b\|_2^2
$$

(which, as a function of b, is minimized when $b = \mathbb{E}(Y)$).

A similar statement can be made about (linear) subspaces by using top-k eigenvectors of $\mathbb{E}(XX^T)$ instead of $\text{cov}(X)$. This is sometimes called *uncentered PCA*.

Theorem 5.4. Let v_1, v_2, \ldots, v_k be top-k eigenvectors of $\mathbb{E}(XX^T)$, and let $V_k := [v_1 | v_2 | \cdots | v_k]$. Then

$$
\mathbb{E}\|(I - V_kV_k^T)X\|_2^2 = \min_{U \in \mathbb{R}^{d \times k} : U^TU = I} \mathbb{E}\|(I - UU^T)X\|_2^2.
$$

5.3 Noisy affine subspace recovery

Suppose there are n points $t_1, t_2, \ldots, t_n \in \mathbb{R}^d$ that lie on an affine subspace A_* of dimension k. In this scenario, you don’t directly observe the t_i; rather, you only observe noisy versions of these points: Y_1, Y_2, \ldots, Y_n, where for some $\sigma_1, \sigma_2, \ldots, \sigma_n > 0$,

$$
Y_j \sim N(t_j, \sigma_j^2 I) \quad \text{for all } j \in [n]
$$

and Y_1, Y_2, \ldots, Y_n are independent. The observations Y_1, Y_2, \ldots, Y_n no longer all lie in the affine subspace A_*, but by applying PCA to the empirical covariance of Y_1, Y_2, \ldots, Y_n, you can hope to approximately recover A_*. Regard X as a random vector whose conditional distribution given the noisy points is uniform over Y_1, Y_2, \ldots, Y_n. In fact, the distribution of X is given by the following generative process:

1. Draw $J \in [n]$ uniformly at random.
2. Given J, draw $Z \sim N(0, \sigma_J^2 I)$.
Note that the empirical covariance based on \(Y_1, Y_2, \ldots, Y_n \) is not exactly \(\text{cov}(X) \), but it can be a good approximation when \(n \) is large (with high probability). Similarly, the empirical average of \(Y_1, Y_2, \ldots, Y_n \) is a good approximation to \(\mathbb{E}(X) \) when \(n \) is large (with high probability). So here, we assume for simplicity that both \(\text{cov}(X) \) and \(\mathbb{E}(X) \) are known exactly. We show that PCA produces a \(k \)-dimensional affine subspace that contains all of the \(t_j \).

Theorem 5.5. Let \(X \) be the random vector as defined above, \(v_1, v_2, \ldots, v_k \) be top-\(k \) eigenvectors of \(\text{cov}(X) \), and \(v_0 := \mathbb{E}(X) \). Then the affine subspace

\[
\hat{A} := \{ v_0 + \alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k : \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R} \}
\]

contains \(t_1, t_2, \ldots, t_n \).

Proof. Theorem 5.3 says that the matrix \(V_k := [v_1 | v_2 | \cdots | v_k] \) minimizes \(\mathbb{E} \| (I - UU^\top) (X - v_0) \|_2^2 \) (as a function of \(U \in \mathbb{R}^{d \times k} \), subject to \(U^\top U = I \)), or equivalently, maximizes \(\text{tr}(\text{cov}(U^\top X)) \). This maximization objective can be written as

\[
\text{tr}(\text{cov}(U^\top X)) = \mathbb{E} \| UU^\top (X - v_0) \|_2^2 \quad \text{(by Fact 5.1)}
\]

\[
= \frac{1}{n} \sum_{j=1}^n \mathbb{E} \left[\| UU^\top (t_j - v_0 + Z) \|_2^2 \bigg| J = j \right]
\]

\[
= \frac{1}{n} \sum_{j=1}^n \mathbb{E} \left[\| UU^\top (t_j - v_0) \|_2^2 + 2 \langle UU^\top (t_j - v_0), UU^\top Z \rangle + \| UU^\top Z \|_2^2 \bigg| J = j \right]
\]

\[
= \frac{1}{n} \sum_{j=1}^n \left\{ \| UU^\top (t_j - v_0) \|_2^2 + \mathbb{E} \left[\| UU^\top Z \|_2^2 \bigg| J = j \right] \right\}
\]

\[
= \frac{1}{n} \sum_{j=1}^n \left\{ \| UU^\top (t_j - v_0) \|_2^2 + k \sigma_j^2 \right\},
\]

where the penultimate step uses the fact that the conditional distribution of \(Z \) given \(J = j \) is \(N(0, \sigma_j^2 I) \), and the final step uses the fact that \(\| UU^\top Z \|_2^2 \) has the same conditional distribution (given \(J = j \)) as the squared length of a \(N(0, \sigma_j^2 I) \) random vector in \(\mathbb{R}^k \). Since \(UU^\top (t_j - v_0) \) is the orthogonal projection of \(t_j - v_0 \) onto the subspace spanned by the columns of \(U \) (call it \(W \)),

\[
\| UU^\top (t_j - v_0) \|_2^2 \leq \| t_j - v_0 \|_2^2 \quad \text{for all } j \in [n].
\]

The inequalities above are equalities precisely when \(t_j - v_0 \in W \) for all \(j \in [n] \). This is indeed the case for the subspace \(A_k = \{ v_0 \} \). Since \(V_k \) maximizes the objective, its columns must span a \(k \)-dimensional subspace \(\hat{W} \) that also contains all of the \(t_j - v_0 \); hence the affine subspace \(\hat{A} = \{ v_0 + x : x \in \hat{W} \} \) contains all of the \(t_j \).

5.4 Singular value decomposition

Let \(A \) be any \(n \times d \) matrix. Our aim is to define an extremely useful decomposition of \(A \) called the singular value decomposition (SVD). Our derivation starts by considering two related matrices, \(A^\top A \) and \(AA^\top \); their eigendecompositions will lead to the SVD of \(A \).

Fact 5.3. \(A^\top A \) and \(AA^\top \) are symmetric and positive semidefinite.
Let Lemma 5.1.

Lemma 5.1. Let \(\lambda \) be an eigenvalue of \(A^\top A \) with corresponding eigenvector \(v \).

- If \(\lambda > 0 \), then \(\lambda \) is a non-zero eigenvalue of \(AA^\top \) with corresponding eigenvector \(Av \).
- If \(\lambda = 0 \), then \(Av = 0 \).

Proof. First suppose \(\lambda > 0 \). Then

\[
AA^\top(Av) = A(A^\top Av) = A(\lambda v) = \lambda(Av),
\]

so \(\lambda \) is an eigenvalue of \(AA^\top \) with corresponding eigenvector \(Av \).

Now suppose \(\lambda = 0 \) (which is the only remaining case, as per Fact 5.3). Then

\[
\|Av\|_2^2 = v^\top A^\top Av = v^\top(\lambda v) = 0.
\]

Since only the zero vector has length 0, it must be that \(Av = 0 \).

(We can apply Lemma 5.1 to both \(A \) and \(A^\top \) to conclude that \(A^\top A \) and \(AA^\top \) have the same non-zero eigenvalues.)

Theorem 5.6 (Singular value decomposition). Let \(A \) be an \(n \times d \) matrix. Let \(v_1, v_2, \ldots, v_d \in \mathbb{R}^d \) be orthonormal eigenvectors of \(A^\top A \) corresponding to eigenvalues \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \). Let \(r \) be the number of positive \(\lambda_i \). Define

\[
u_i := \frac{Av_i}{\|Av_i\|_2} = \frac{Av_i}{\sqrt{v_i^\top A^\top Av_i}} = \frac{Av_i}{\sqrt{\lambda_i}} \quad \text{for each } i \in [r].
\]

Let \(u_{r+1}, u_{r+2}, \ldots, u_n \in \mathbb{R}^n \) be any orthonormal vectors that are orthogonal to \(\text{span}\{u_1, u_2, \ldots, u_r\} \).

Then

\[
A = \begin{bmatrix}
u_1 & \cdots & \nu_r & u_{r+1} & \cdots & u_n
\end{bmatrix} = \sqrt{\lambda_1} \begin{bmatrix}1 & \cdots & 1 & 0 & \cdots & 0
\end{bmatrix} = \begin{bmatrix}0 & \cdots & 0
\end{bmatrix}.
\]

Moreover, \(USV^\top = \sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top \).

Proof. The proof of the second claim \(USV^\top = \sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top \) is a straightforward computation.

To prove the first claim, that \(A = USV^\top \), it suffices to show that for some set of \(d \) linearly independent vectors \(q_1, q_2, \ldots, q_d \in \mathbb{R}^d \),

\[
Aq_j = \left(\sum_{i=1}^r \sqrt{\lambda_i} u_i v_i^\top \right) q_j \quad \text{for all } j \in [d].
\]

We’ll use \(v_1, v_2, \ldots, v_d \). Observe that

\[
Av_j = \begin{cases}
\sqrt{\lambda_j} u_j & \text{if } 1 \leq j \leq r, \\
0 & \text{if } r < j \leq d,
\end{cases}
\]
by definition of \(\mathbf{u}_i \) and by Lemma 5.1. Moreover,

\[
\left(\sum_{i=1}^{r} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{v}_i^\top \right) \mathbf{v}_j = \sum_{i=1}^{r} \sqrt{\lambda_i} \langle \mathbf{v}_j, \mathbf{v}_i \rangle \mathbf{u}_i = \begin{cases} \sqrt{\lambda_j} \mathbf{u}_j & \text{if } 1 \leq j \leq r, \\ 0 & \text{if } r < j \leq d, \end{cases}
\]

since \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d \) are orthonormal. We conclude that \(\mathbf{A} \mathbf{v}_j = \left(\sum_{i=1}^{r} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{v}_i^\top \right) \mathbf{v}_j \) for all \(j \in [d] \), and hence \(\mathbf{A} = \sum_{i=1}^{r} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{v}_i^\top = \mathbf{USV}^\top \).

We also note

\[
\mathbf{u}_i^\top \mathbf{u}_j = \frac{\mathbf{v}_i^\top \mathbf{A}^\top \mathbf{A} \mathbf{v}_j}{\sqrt{\lambda_i} \lambda_j} = \frac{\lambda_j \mathbf{v}_i^\top \mathbf{v}_j}{\sqrt{\lambda_i} \lambda_j} = 0 \quad \text{for all } 1 \leq i < j \leq r,
\]

where the last step follows since \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_d \) are orthonormal. This, along with the choice of \(\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \ldots, \mathbf{u}_n \), implies that \(\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_n \) are orthonormal.

The decomposition of \(\mathbf{A} \) into the matrix product \(\mathbf{USV}^\top \) from Theorem 5.6 is called the singular value decomposition (SVD) of \(\mathbf{A} \). The columns of \(\mathbf{U} \) are the left singular vectors, and the columns of \(\mathbf{V} \) are the right singular vectors. The scalars \(\sqrt{\lambda_1} \geq \sqrt{\lambda_2} \geq \cdots \geq \sqrt{\lambda_r} \) are the (positive) singular values corresponding to the left/right singular vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{u}_r \). The singular vectors \(\mathbf{u}_i \) and \(\mathbf{v}_i \) for \(i > r \) have 0 as a corresponding singular value.

The second representation, \(\mathbf{A} = \sum_{i=1}^{r} \sqrt{\lambda_i} \mathbf{u}_i \mathbf{v}_i^\top \) is called the thin SVD of \(\mathbf{A} \), as it can also be written as

\[
\mathbf{A} = \begin{bmatrix}
\mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_r
\end{bmatrix}
\begin{bmatrix}
\sqrt{\lambda_1} & \sqrt{\lambda_2} & \cdots & \sqrt{\lambda_r}
\end{bmatrix}
\begin{bmatrix}
\mathbf{v}_1^\top \\
\mathbf{v}_2^\top \\
\vdots \\
\mathbf{v}_r^\top
\end{bmatrix}
\]

The number \(r \) of positive \(\lambda_i \) is the rank of \(\mathbf{A} \), which is at most the smaller of \(n \) and \(d \).

Just as before, we'll refer to the \(k \) largest singular values of \(\mathbf{A} \) as the top-\(k \) singular values of \(\mathbf{A} \), and the \(k \) smallest singular values as the bottom-\(k \) singular values of \(\mathbf{A} \). We analogously use the term top-\(k \) (resp., bottom-\(k \)) singular vectors to refer to orthonormal singular vectors corresponding to the top-\(k \) (resp., bottom-\(k \)) singular values. Again, the choice of top-\(k \) (or bottom-\(k \)) singular vectors is not necessarily unique.

Relationship between PCA and SVD

As seen above, the eigenvectors of \(\mathbf{A}^\top \mathbf{A} \) are the right singular vectors \(\mathbf{A} \), and the eigenvectors of \(\mathbf{AA}^\top \) are the left singular vectors of \(\mathbf{A} \).

Suppose there are \(n \) data points \(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n \in \mathbb{R}^d \), arranged as the rows of the matrix \(\mathbf{A} \in \mathbb{R}^{n \times d} \). Now regard \(\mathbf{X} \) as a random vector with the uniform distribution on the \(n \) data points. Then

\[
\mathbb{E}(\mathbf{XX}^\top) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{a}_i \mathbf{a}_i^\top = \frac{1}{n} \mathbf{A}^\top \mathbf{A}: \text{top-}\(k \) eigenvectors of \(\frac{1}{n} \mathbf{A}^\top \mathbf{A} \) are top-\(k \) right singular vectors of \(\mathbf{A} \). Hence, rank-\(k \) uncentered PCA (as in Theorem 5.4) corresponds to the subspace spanned by the top-\(k \) right singular vectors of \(\mathbf{A} \).
Variational characterization of singular values

Given the relationship between the singular values of A and the eigenvalues of $A^\top A$ and $A A^\top$, it is easy to obtain variational characterizations of the singular values. We can also obtain the characterization directly.

Fact 5.4. Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be given by $A = \sum_{i=1}^r \sigma_i u_i v_i^\top$, where $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For each $i \in [r]$,

$$
\sigma_i = \max_{x \in S^{d-1} : \langle v_i, x \rangle = 0 \forall j < i} y^\top A x = u_i^\top A v_i.
$$

Relationship between eigendecomposition and SVD

If $M \in \mathbb{R}^{d \times d}$ is symmetric and has eigendecomposition $M = \sum_{i=1}^d \lambda_i v_i v_i^\top$, then its singular values are the absolute values of the λ_i. We can take v_1, v_2, \ldots, v_d as corresponding right singular vectors. For corresponding left singular vectors, we can take $u_i := v_i$ whenever $\lambda_i \geq 0$ (which is the case for all i if M is also psd), and $u_i := -v_i$ whenever $\lambda_i < 0$. Therefore, we have the following variational characterization of the singular values of M.

Fact 5.5. Let the eigendecomposition of a symmetric matrix $M \in \mathbb{R}^{d \times d}$ be given by $M = \sum_{i=1}^d \lambda_i v_i v_i^\top$, where $|\lambda_1| \geq |\lambda_2| \geq \cdots \geq |\lambda_d|$. For each $i \in [d]$,

$$
|\lambda_i| = \max_{x \in S^{d-1} : \langle v_i, x \rangle = 0 \forall j < i} y^\top M x = \max_{x \in S^{d-1} : \langle v_i, x \rangle = 0 \forall j < i} |x^\top M x| = |v_i^\top M v_i|.
$$

Moore-Penrose pseudoinverse

The SVD defines a kind of matrix inverse that is applicable to non-square matrices $A \in \mathbb{R}^{n \times d}$ (where possibly $n \neq d$). Let the SVD be given by $A = U S V^\top$, where $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{d \times r}$ satisfy $U^\top U = V^\top V = I$, and $S \in \mathbb{R}^{r \times r}$ is diagonal with positive diagonal entries. Here, the rank of A is r. The Moore-Penrose pseudoinverse of A is given by

$$
A^\dagger := VS^{-1}U^\top \in \mathbb{R}^{d \times n}.
$$

Note that A^\dagger is well-defined: S is invertible because its diagonal entries are all strictly positive.

What is the effect of multiplying A by A^\dagger on the left? Using the SVD of A,

$$
A^\dagger A = VS^{-1}U^\top U S V^\top = VV^\top \in \mathbb{R}^{d \times d},
$$

which is the orthogonal projection to the row space of A. In particular, this means that

$$
A A^\dagger A = A.
$$

Similarly, $A A^\dagger = U U^\top \in \mathbb{R}^{n \times n}$, the orthogonal projection to the column space of A. Note that if $r = d$, then $A^\dagger A = I$, as the row space of A is simply \mathbb{R}^d; similarly, if $r = n$, then $A A^\dagger = I$.

The Moore-Penrose pseudoinverse is also related to least squares. For any $y \in \mathbb{R}^n$, the vector $A A^\dagger y$ is the orthogonal projection of y onto the column space of A. This means that $\min_{x \in \mathbb{R}^d} \|Ax - y\|_2^2$ is minimized by $x = A^\dagger y$. The more familiar expression for the least squares solution $x = (A^\top A)^{-1} A^\top y$ only applies in the special case where $A^\top A$ is invertible. The connection to the general form of a solution can be seen by using the easily verified identity

$$
A^\dagger = (A^\top A)^{-1} A^\top
$$

and using the fact that $(A^\top A)^{\dagger} = (A^\top A)^{-1}$ when $A^\top A$ is invertible.
5.5 Matrix norms and low-rank SVD

Matrix inner product and the Frobenius norm

The space of $n \times d$ real matrices is a real vector space in its own right, and it can, in fact, be viewed as a Euclidean space with inner product given by $\langle X, Y \rangle := \text{tr}(X^T Y)$. It can be checked that this indeed is a valid inner product. For instance, the fact that the trace function is linear can be used to establish linearity in the first argument:

\[
\langle cX + Y, Z \rangle = \text{tr}((cX + Y)^T Z) = \text{tr}(cX^T Z + Y^T Z) = c\text{tr}(X^T Z) + \text{tr}(Y^T Z) = c\langle X, Z \rangle + \langle Y, Z \rangle.
\]

The inner product naturally induces an associated norm $X \mapsto \sqrt{\langle X, X \rangle}$. Viewing $X \in \mathbb{R}^{n \times d}$ as a data matrix whose rows are the vectors $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, we see that

\[
\langle X, X \rangle = \text{tr}(X^T X) = \text{tr}\left(\sum_{i=1}^n x_i x_i^T\right) = \sum_{i=1}^n \text{tr}(x_i x_i^T) = \sum_{i=1}^n \text{tr}(x_i^T x_i) = \sum_{i=1}^n \|x_i\|_2^2.
\]

Above, we make use of the fact that for any matrices $A, B \in \mathbb{R}^{n \times d}$,

\[
\text{tr}(A^T B) = \text{tr}(BA^T),
\]

which is called the cyclic property of the matrix trace. Therefore, the square of the induced norm is simply the sum-of-squares of the entries in the matrix. We call this norm the Frobenius norm of the matrix X, and denote it by $\|X\|_F$. It can be checked that this matrix inner product and norm are exactly the same as the Euclidean inner product and norm when you view the $n \times d$ matrices as nd-dimensional vectors obtained by stacking columns on top of each other (or rows side-by-side).

Suppose a matrix X has thin SVD $X = USV^T$, where $S = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_r)$, and $U^T U = V^T V = I$. Then its squared Frobenius norm is

\[
\|X\|_F^2 = \text{tr}(VSU^T USV^T) = \text{tr}(VS^2V^T) = \text{tr}(S^2V^T V) = \text{tr}(S^2) = \sum_{i=1}^r \sigma_i^2,
\]

the sum-of-squares of X’s singular values.

Best rank-k approximation in Frobenius norm

Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be given by $A = \sum_{i=1}^r \sigma_i u_i v_i^T$. Here, we assume $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$. For any $k \leq r$, a rank-k SVD of A is obtained by just keeping the first k components (corresponding to the k largest singular values), and this yields a matrix $A_k \in \mathbb{R}^{n \times d}$ with rank k:

\[
A_k := \sum_{i=1}^k \sigma_i u_i v_i^T. \tag{5.1}
\]

This matrix A_k is the best rank-k approximation to A in the sense that it minimizes the Frobenius norm error over all matrices of rank (at most) k. This is remarkable because the set of matrices of rank at most k is not a set over which it is typically easy to optimize. (For instance, it is not a convex set.)
Theorem 5.7. Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then:

1. The rows of A_k are the orthogonal projections of the corresponding rows of A to the k-dimensional subspace spanned by top-k right singular vectors v_1, v_2, \ldots, v_k of A.

2. $\|A - A_k\|_F \leq \min\{\|A - B\|_F : B \in \mathbb{R}^{n \times d}, \text{rank}(B) \leq k\}$.

3. If $a_1, a_2, \ldots, a_n \in \mathbb{R}^d$ are the rows of A, and $\hat{a}_1, \hat{a}_2, \ldots, \hat{a}_n \in \mathbb{R}^d$ are the rows of A_k, then

\[
\sum_{i=1}^n \|a_i - \hat{a}_i\|^2 \leq \sum_{i=1}^n \|a_i - b_i\|^2
\]

for any vectors $b_1, b_2, \ldots, b_n \in \mathbb{R}^d$ that span a subspace of dimension at most k.

Proof. The orthogonal projection to the subspace W_k spanned by v_1, v_2, \ldots, v_k is given by $x \mapsto V_k^T x$, where $V_k := [v_1 | v_2 | \cdots | v_k]$. Since $V_k V_k^T v_i = v_i$ for $i \in [k]$ and $V_k V_k^T v_i = 0$ for $i > k$,

\[
AV_k V_k^T = \sum_{i=1}^r \sigma_i u_i v_i^T V_k V_k^T = \sum_{i=1}^k \sigma_i u_i v_i^T = A_k.
\]

This equality says that the rows of A_k are the orthogonal projections of the rows of A onto W_k. This proves the first claim.

Consider any matrix $B \in \mathbb{R}^{n \times d}$ with $\text{rank}(B) \leq k$, and let W be the subspace spanned by the rows of B. Let Π_W denote the orthogonal projector to W. Then clearly we have $\|A - A \Pi_W\|_F \leq \|A - B\|_F$. This means that

\[
\min_{B \in \mathbb{R}^{n \times d} : \text{rank}(B) \leq k} \|A - B\|_F^2 = \min_{\text{subspace } W \subseteq \mathbb{R}^d : \dim W \leq k} \|A - A \Pi_W\|_F^2 = \min_{\text{subspace } W \subseteq \mathbb{R}^d : \dim W \leq k} \sum_{i=1}^n \|(I - \Pi_W) a_i\|^2.
\]

where $a_i \in \mathbb{R}^d$ denotes the i-th row of A. In fact, it is clear that we can take the minimization over subspaces W with $\dim W = k$. Since the orthogonal projector to a subspace of dimension k is of the form UU^T for some $U \in \mathbb{R}^{d \times k}$ satisfying $U^T U = I$, it follows that the expression above is the same as

\[
\min_{U \in \mathbb{R}^{d \times k} : U^T U = I} \sum_{i=1}^n \|(I - UU^T) a_i\|^2.
\]

Observe that $\frac{1}{n} \sum_{i=1}^n a_i a_i^T = \frac{1}{n} A^T A$, so Theorem 5.6 implies that top-k eigenvectors of the $\frac{1}{n} \sum_{i=1}^n a_i a_i^T$ are top-k right singular vectors of A. By Theorem 5.4 the minimization problem above is achieved when $U = V_k$. This proves the second claim. The third claim is just a different interpretation of the second claim. \(\square\)

Best rank-k approximation in spectral norm

Another important matrix norm is the **spectral norm**: for a matrix $X \in \mathbb{R}^{n \times d}$,

\[
\|X\|_2 := \max_{u \in S^{d-1}} \|Xu\|_2.
\]

By Theorem 5.6 the spectral norm of X is equal to its largest singular value.

Fact 5.6. Let the SVD of a matrix $A \in \mathbb{R}^{n \times d}$ be as given in Theorem 5.6, with $r = \text{rank}(A)$.

- For any $x \in \mathbb{R}^d$,
 $$\|Ax\|_2 \leq \sigma_1 \|x\|_2.$$

- For any x in the span of v_1, v_2, \ldots, v_r,
 $$\|Ax\|_2 \geq \sigma_r \|x\|_2.$$

Unlike the Frobenius norm, the spectral norm does not arise from a matrix inner product. Nevertheless, it can be checked that it has the required properties of a norm: it satisfies $\|cx\|_2 = |c| \|x\|_2$ and $\|X + Y\|_2 \leq \|X\|_2 + \|Y\|_2$, and the only matrix with $\|X\|_2 = 0$ is $X = 0$. Because of this, the spectral norm also provides a metric between matrices, $\text{dist}(X, Y) = \|X - Y\|_2$, satisfying the properties given in Section 1.1.

The rank-k SVD of a matrix A also provides the best rank-k approximation in terms of spectral norm error.

Theorem 5.8. Let $A \in \mathbb{R}^{n \times d}$ be any matrix, with SVD as given in Theorem 5.6, and A_k as defined in (5.1). Then $\|A - A_k\|_2 \leq \min \{\|A - B\|_2 : B \in \mathbb{R}^{n \times d}, \text{rank}(B) \leq k\}$.

Proof. Since the largest singular value of A is $\sum_{i=k+1}^r \sigma_i u_i v_i^\top$ is σ_{k+1}, it follows that

$$\|A - A_k\|_2 = \sigma_{k+1}.$$