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Gaussian distributions




Gaussian (normal) distributions

» Z ~ N(0, 1) means Z follows a standard Gaussian distribution,
i.e., has probability density
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> If Z1,25,...,2Z4 are iid N(0, 1) random variables, then say
Z:=(21,25,...,2q) follows a standard multivariate Gaussian

distribution on RY, i.e., Z ~ N(0, /).
» Other Gaussian distributions on R? arise by applying
(invertible) linear maps and translations to Z:

linear map
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translation
» X:=AZ + p ~ N(u, AA") has
E(X) = p and cov(X) = AA'.

Shape of Gaussian distributions

Let X ~ N(u, X), p € RY, and X = 0.
Contours of equal density are ellipsoids around p:
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{(xeRY: (x—p)" X Yx—p)=r?}.

> Let eigenvalues of X' be A1 > X > - > Ay > 0,
corresponding (orthonormal) eigenvectors be vi, va, ..., vq.

» var({(v;, X)) = \;. (This is true even if X is not Gaussian.)
» If Yi:= (v, X — p), then Y; ~ N(0, \;).
» Y1, Yo, ..., Yy are independent;

Y = (Yl, YQ, cey Yd) ~ N(O,diag()\l, )\2, e )\d))
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What about concentration properties?




Concentration of spherical Gaussians

» Spherical Gaussian: X ~ N(u, o21).
> Pick any § € (0,1). Then

for any u € 971, P((U,X—u)gm/2ln(1/5)> > 1-90,

P |xu|§§a2d(1+2 In(1/9) , 2n(1/0) | > 1-94,
d d
/
P IX—u|§202d<1—2 n(1/3)) > 1.5
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(Standard tail bounds for N(0, 1) and x?(d) distributions.)

» Behaves like spherical shell around g of radius ov/d and
thickness O(ad1/4).

Concentration of general Gaussians

» General Gaussian: X ~ N(u, X).
» Concentration of (u, X — u) for u € S9! depends on u:

(u, X —p) ~ NO,u"Xu).

» Concentration of || X — u||3: a mismatch of norms.

> [ ZTVA(X = )3 ~ Xx3(d).
» || X — p||3 distributed as linear combination of independent
x%(1) random variables:
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where 71, 25, . .., Zy are iid N(0, 1).
d
> EIX = pllz =30 M
> |X — |3 is (4327, A2, 4\, )-subexponential.




Eccentricity of general Gaussians

» For X ~ N(u, ), with probability 1 — ¢,

Xl € d 1i0( //flogc(il/5)+f<clogc(11/5)) |

where \ 1= %Z}j:l Ai and K= A1/
» Kk measure eccentricity of equal density ellipsoids: 1 < k < d.

Using multivariate Gaussians as a statistical model
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P:={N(p,X): pcRY X~ 0}
» Parameter estimation given data xi, X2, ..., x, € RY
Maximum likelihood estimators:

v

A 1 - 1< . .
fo= ;Zx,-, X = ;Z(x,-—u)(x,-—u)T.
i=1 i=1

» Accuracy when data is iid sample from N(u, X):

la—pl <7, [|¥=-X, <7

> fo ~ N(p,X/n).
» | X=X = max
e s

Esd 1

u (X - Z)U‘.
> Note that E(X) # X, but almost.




Multiple Gaussian populations

Multiple populations

» Often data do not come from just a single population, but
rather several different populations.

» If data are “labeled” by population, then can partition data,
and (say) fit a Gaussian distribution to each part (or whatever).

» What if data are not labeled?




Simple case: multiple Gaussian populations

Suppose data come from k populations Py, Py, ..., Pk.
Further, for extreme simplicity, suppose P; = N(u;, I).
When can we separate data from P; and P; (i # j)?

> Easier when means p; and p; are farther apart.

Strict separation condition:

» Whenever a and b come from same P;, and ¢ comes from
different P;,
la—bl> < [la—c|2.

Under strict separation, Kruskal's minimum spanning tree
(where edge weight = Euclidean distance) connects data from
same population, before connecting across populations.

How far apart should p; and p; be to have strict separation?

Disjoint spherical shells

> Recall: N(p;, I) = thin spherical shell around p; of radius v/d.

> I 12; — aylla > V/d, then “N(ya;, 1) N (s, 1) =~ 0"

» (This can be easily formalized.)

» But this reasoning ignores approximate orthogonality!




Approximate orthogonality
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Figure 1: Distances between points from spherical Gaussian populations

Probabilistic analysis

> Let A, B ~ N(u;, 1) and C ~ N(p, 1) (all independent).

» Write
A:Hi‘l‘ZA, C:HJ+ZC7
B = 20 + ZB7

where Z 5, Zg, Z ¢ are iid N(O, /).
» Then
|A—C|3 - [A- B3
= [lei — w13 + 200 — 1, Za— Z) + 1Za — Zc I3
—1Za— Zslf5-
» With high probability, this is at least

e — /-”j”% — O(||p; — Hy‘Hz) - O(\/E),

which is positive when ||p; — p;][2 > dl/4.




Probabilistic analysis (continued)

» Need previous concentration to hold for all triples in n data:

union bound over O(n3) events means we need log(n) factors
in separation, specifically

I = mylla > C((dlog(n))/* + log(n)) for all i # .,

where C > 0 is a sufficiently large absolute constant.

Mixture models

» Can think of overall population as a mixture distribution
1 N(H’l? I) + 2 N(NZ? I) + o T N(Nka I) )

where 7; is expected proportion from N(u;, /).

» Usually MLE for mixture distribution parameters {(m;, p;)}%_,
is computationally intractable in general.

» But with strict separation:

» First separate data by mixture component source.
» Then estimate 7; and p; using separated data.




Another approach

» Project data to line spanned by some u € S9!
» With “good” u, projected means remain separated.

» Use classical statistical methods to estimate projected means.

» Do this for d nearby but linearly independent u; can then
back-out estimates of original means.

Projection pursuit




Exploratory data analysis (Tukey)

» Many classical data analysis methods based on finding
“interesting” features of data set.

E.g., visually inspect many one-dimensional projections of data.
Called projection pursuit.

Folklore: most projections are not interesting.
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Two examples

» X = (X1, Xa,...,Xy) is Rademacher (i.e., uniform on {£1}9).
> uy = (1/3/d,1/V/d, ..., 1/3/d):

d
(u, X) = —=> " X;.
» By central limit theorem, this is approximately N(0, 1).
» uy = (1,0,...,0):

<U2, X> = X1 .

» Very different from N(0, 1).

» “Theorem”: Most projections are more like uy rather than us.




Projection pursuit asymptotics (Diaconis-Freedman, 1984)

» Suppose X1, X5,..., Xy are independent random variables.
» Assume E(X;) =0, E(X?) =1, E|X|® < p < o0.

» For nearly all u € gd-1

iglg P({u, X) <t) — CD(t)‘ < O(%) :

where ¢ is N(0,1) CDF.

Application to mixture models

» Suppose X ~ w1 Py + P> + -+ - + mi Pk, where each P; is a
product distribution.

» X generally does not have independent coordinates.

> But for most u € S9!, distribution of (u, X) is close to

miNy + maNo 4 - - - 4 T Ny

for some univariate normal distributions Ni, N, ..., N.




