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Gaussian distributions
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Gaussian (normal) distributions
I Z ∼ N(0, 1) means Z follows a standard Gaussian distribution,

i.e., has probability density

z 7→ 1√
2π

e−z2/2 .

I If Z1,Z2, . . . ,Zd are iid N(0, 1) random variables, then say
Z := (Z1,Z2, . . . ,Zd ) follows a standard multivariate Gaussian
distribution on Rd , i.e., Z ∼ N(0, I).

I Other Gaussian distributions on Rd arise by applying
(invertible) linear maps and translations to Z :

linear map︷ ︸︸ ︷
z 7→ Az 7→ Az + µ︸ ︷︷ ︸

translation

.

I X := AZ + µ ∼ N(µ,AA>) has

E(X) = µ and cov(X) = AA> .
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Shape of Gaussian distributions

I Let X ∼ N(µ,Σ), µ ∈ Rd , and Σ � 0.
I Contours of equal density are ellipsoids around µ:

{x ∈ Rd : (x − µ)>Σ−1(x − µ) = r2} .

I Let eigenvalues of Σ be λ1 ≥ λ2 ≥ · · · ≥ λd > 0,
corresponding (orthonormal) eigenvectors be v1, v2, . . . , vd .

I var(〈v i ,X〉) = λi . (This is true even if X is not Gaussian.)
I If Yi := 〈v i ,X − µ〉, then Yi ∼ N(0, λi ).
I Y1,Y2, . . . ,Yd are independent;

Y := (Y1,Y2, . . . ,Yd ) ∼ N(0, diag(λ1, λ2, . . . , λd )).
I What about concentration properties?
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Concentration of spherical Gaussians
I Spherical Gaussian: X ∼ N(µ, σ2I).
I Pick any δ ∈ (0, 1). Then

for any u ∈ Sd−1 , P
(
〈u,X − µ〉 ≤ σ

√
2 ln(1/δ)

)
≥ 1− δ ,

P


‖X − µ‖22 ≤ σ2d


1 + 2

√
ln(1/δ)

d + 2 ln(1/δ)
d





 ≥ 1− δ ,

P


‖X − µ‖22 ≥ σ2d


1− 2

√
ln(1/δ)

d





 ≥ 1− δ .

(Standard tail bounds for N(0, 1) and χ2(d) distributions.)
I Behaves like spherical shell around µ of radius σ

√
d and

thickness O(σd1/4).
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Concentration of general Gaussians
I General Gaussian: X ∼ N(µ,Σ).
I Concentration of 〈u,X − µ〉 for u ∈ Sd−1 depends on u:

〈u,X − µ〉 ∼ N(0,u>Σu) .

I Concentration of ‖X − µ‖22: a mismatch of norms.
I ‖Σ−1/2(X − µ)‖2

2 ∼ χ2(d).
I ‖X − µ‖2

2 distributed as linear combination of independent
χ2(1) random variables:

d∑

i=1
λiZ 2

i

where Z1,Z2, . . . ,Zd are iid N(0, 1).
I E ‖X − µ‖2

2 =
∑d

i=1 λi .
I ‖X − µ‖2

2 is (4
∑d

i=1 λ
2
i , 4λ1)-subexponential.
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Eccentricity of general Gaussians

I For X ∼ N(µ,Σ), with probability 1− δ,

‖X − µ‖22 ∈ λ̄d


1± O



√
κ log(1/δ)

d + κ log(1/δ)
d





 ,

where λ̄ := 1
d
∑d

i=1 λi and κ := λ1/λ̄.
I κ measure eccentricity of equal density ellipsoids: 1 ≤ κ ≤ d .
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Using multivariate Gaussians as a statistical model

I P := {N(µ,Σ) : µ ∈ Rd , Σ � 0}
I Parameter estimation given data x1, x2, . . . , xn ∈ Rd

I Maximum likelihood estimators:

µ̂ := 1
n

n∑

i=1
x i , Σ̂ := 1

n

n∑

i=1
(x i − µ̂)(x i − µ̂)> .

I Accuracy when data is iid sample from N(µ,Σ):

‖µ̂− µ‖2 ≤ ? , ‖Σ̂ −Σ‖? ≤ ?

I µ̂ ∼ N(µ,Σ/n).
I ‖Σ̂ −Σ‖2 = max

u∈Sd−1

∣∣∣u>(Σ̂ −Σ)u
∣∣∣.

I Note that E(Σ̂) 6= Σ, but almost.
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Multiple Gaussian populations
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Multiple populations

I Often data do not come from just a single population, but
rather several different populations.

I If data are “labeled” by population, then can partition data,
and (say) fit a Gaussian distribution to each part (or whatever).

I What if data are not labeled?
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Simple case: multiple Gaussian populations

I Suppose data come from k populations P1,P2, . . . ,Pk .
I Further, for extreme simplicity, suppose Pi = N(µi , I).
I When can we separate data from Pi and Pj (i 6= j)?

I Easier when means µi and µj are farther apart.
I Strict separation condition:

I Whenever a and b come from same Pi , and c comes from
different Pj ,

‖a − b‖2 < ‖a − c‖2 .

I Under strict separation, Kruskal’s minimum spanning tree
(where edge weight = Euclidean distance) connects data from
same population, before connecting across populations.

I How far apart should µi and µj be to have strict separation?
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Disjoint spherical shells

I Recall: N(µi , I) ≈ thin spherical shell around µi of radius
√

d .
I If ‖µi − µj‖2 �

√
d , then “N(µi , I) ∩ N(µj , I) ≈ 0”.

I (This can be easily formalized.)
I But this reasoning ignores approximate orthogonality!
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Approximate orthogonality 

Figure 1: Distances between points from spherical Gaussian populations
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Probabilistic analysis
I Let A,B ∼ N(µi , I) and C ∼ N(µj , I) (all independent).
I Write

A = µi + ZA , C = µj + ZC ,

B = µi + ZB ,

where ZA,ZB,ZC are iid N(0, I).
I Then

‖A− C‖22 − ‖A− B‖22
= ‖µi − µj‖22 + 2〈µi − µj ,ZA − ZC 〉+ ‖ZA − ZC‖22
− ‖ZA − ZB‖22 .

I With high probability, this is at least

‖µi − µj‖22 − O(‖µi − µj‖2)− O(
√

d) ,

which is positive when ‖µi − µj‖2 � d1/4.
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Probabilistic analysis (continued)

I Need previous concentration to hold for all triples in n data:
union bound over O(n3) events means we need log(n) factors
in separation, specifically

‖µi − µj‖2 ≥ C
(

(d log(n))1/4 + log(n)
)

for all i 6= j ,

where C > 0 is a sufficiently large absolute constant.
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Mixture models

I Can think of overall population as a mixture distribution

π1 N(µ1, I) + π2 N(µ2, I) + · · ·+ πk N(µk , I) ,

where πi is expected proportion from N(µi , I).
I Usually MLE for mixture distribution parameters {(πi ,µi )}ki=1

is computationally intractable in general.
I But with strict separation:

I First separate data by mixture component source.
I Then estimate πi and µi using separated data.
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Another approach

I Project data to line spanned by some u ∈ Sd−1.
I With “good” u, projected means remain separated.

I Use classical statistical methods to estimate projected means.
I Do this for d nearby but linearly independent u; can then

back-out estimates of original means.
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Projection pursuit
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Exploratory data analysis (Tukey)

I Many classical data analysis methods based on finding
“interesting” features of data set.

I E.g., visually inspect many one-dimensional projections of data.
I Called projection pursuit.
I Folklore: most projections are not interesting.
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Two examples

I X = (X1,X2, . . . ,Xd ) is Rademacher (i.e., uniform on {±1}d).
I u1 := (1/

√
d , 1/

√
d , . . . , 1/

√
d):

〈u1,X〉 = 1√
d

d∑

i=1
Xi .

I By central limit theorem, this is approximately N(0, 1).
I u2 := (1, 0, . . . , 0):

〈u2,X〉 = X1 .

I Very different from N(0, 1).
I “Theorem”: Most projections are more like u1 rather than u2.
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Projection pursuit asymptotics (Diaconis-Freedman, 1984)

I Suppose X1,X2, . . . ,Xd are independent random variables.
I Assume E(Xi ) = 0, E(X 2

i ) = 1, E |Xi |3 ≤ ρ <∞.
I For nearly all u ∈ Sd−1,

sup
t∈R

∣∣∣P
(〈u,X〉 ≤ t

)− Φ(t)
∣∣∣ ≤ Õ

(
ρ√
d

)
,

where Φ is N(0, 1) CDF.
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Application to mixture models

I Suppose X ∼ π1P1 + π2P2 + · · ·+ πkPk , where each Pi is a
product distribution.

I X generally does not have independent coordinates.
I But for most u ∈ Sd−1, distribution of 〈u,X〉 is close to

π1N1 + π2N2 + · · ·+ πkNk

for some univariate normal distributions N1,N2, . . . ,Nk .
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