COMS 4772 Fall 2016 Homework 3 Due Monday, November 21

Instructions:

- The required number of points for this assignment is 100 . Any points you earn beyond this is extra credit.
- The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about. html) are, of course, in effect.
- Using this $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ template will be helpful for grading purposes.

Problem 1 (25 points). Let \boldsymbol{A} be a symmetric psd $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ and corresponding orthonormal eigenvectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$. Also let \boldsymbol{A} be a symmetric psd $n \times n$ matrix with $\hat{\boldsymbol{v}}_{1} \in \arg \max _{\boldsymbol{v} \in S^{n-1}} \boldsymbol{v}^{\top} \widetilde{\boldsymbol{A}} \boldsymbol{v}$. Prove that

$$
\left\langle\hat{\boldsymbol{v}}_{1}, \boldsymbol{v}_{1}\right\rangle^{2} \geq 1-(2 \epsilon / \gamma)^{2},
$$

where $\gamma:=\lambda_{1}-\lambda_{2}$ and $\epsilon:=\|\widetilde{\boldsymbol{A}}-\boldsymbol{A}\|_{2}$. Try to do this from first principles (i.e., do not invoke Davis-Kahan or Wedin's theorem).

Solution.

Problem 2 (25 points). Let \boldsymbol{A} be the adjacency matrix in $\{0,1\}^{n \times n}$ for a random undirected graph over n vertices, where the edges appear independently, each with probability at most p. Use Matrix Bernstein (Theorem 1. below) to prove that with probability at least 0.99,

$$
\|\boldsymbol{A}-\mathbb{E}(\boldsymbol{A})\|_{2} \leq O(\sqrt{p n \log n}+\log n) .
$$

Solution.

Problem 3 ($10+65=75$ points). In a crowdsourcing problem, there are m images that need to be labeled with either +1 or -1 , and there are n workers available to do the labeling. Each worker provides $\{ \pm 1\}$ labels for all images: the label provided by worker j on image i is $X_{i, j}$. The correct $\{ \pm 1\}$ label for image i is Z_{i}.

Assume the following generative process for the correct labels and worker-provided labels. The process is governed by parameters $\gamma:=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right) \in[-1,+1]^{m}$ and $\boldsymbol{\delta}:=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in$ $[-1,+1]^{n}$. The data for images $\left\{\left(X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}, Z_{i}\right)\right\}_{i=1}^{m}$ are independent. For each image i,

- the distribution of the correct label is given by

$$
\mathbb{P}\left(Z_{i}=+1\right)=1-\mathbb{P}\left(Z_{i}=-1\right)=\frac{1+\gamma_{i}}{2} ;
$$

- the worker-provided labels $X_{i, 1}, X_{i, 2}, \ldots, X_{i, n}$ are conditionally independent given Z_{i};
- worker j provides the correct label with probability $\frac{1+\delta_{j}}{2}$: for each $z \in\{ \pm 1\}$,

$$
\mathbb{P}\left(X_{i, j}=z \mid Z_{i}=z\right)=1-\mathbb{P}\left(X_{i, j} \neq z \mid Z_{i}=z\right)=\frac{1+\delta_{j}}{2} .
$$

Suppose the random matrix \boldsymbol{X} (whose (i, j)-th entry is $X_{i, j}$) is observed, and the correct labels $\boldsymbol{Z}:=\left(Z_{1}, Z_{2}, \ldots, Z_{m}\right)$ are hidden.
(a) Write expressions for the largest singular value of $\mathbb{E}(\boldsymbol{X})$ and also for the corresponding (unit length) left and right singular vectors.
(b) Assume that $\gamma \in\{ \pm 1\}^{m}$ and $\delta_{1} \geq 0.1$. Write a procedure for estimating γ and $\boldsymbol{\delta}$ based on the singular value decomposition of \boldsymbol{X}. Prove bounds on the Euclidean norm errors of your estimates that hold with probability at least 0.99.
Hint: you may find (some of) the theorems given below to be useful.

Solution.

(a)
(b)

Some theorems

Theorem 1 (Matrix Bernstein). Let $\boldsymbol{X}_{1}, \boldsymbol{X}_{2}, \ldots, \boldsymbol{X}_{N}$ be independent, random symmetric matrices in $\mathbb{R}^{d \times d}$. Assume each \boldsymbol{X}_{i} satisfies $\mathbb{E}\left(\boldsymbol{X}_{i}\right)=\mathbf{0}$ and $\lambda_{\max }\left(\boldsymbol{X}_{i}\right) \leq R$ almost surely. For all $t \geq 0$,

$$
\mathbb{P}\left(\lambda_{\max }\left(\sum_{i=1}^{N} \boldsymbol{X}_{i}\right) \geq t\right) \leq d \cdot \exp \left(-\frac{t^{2}}{2\left(\sigma^{2}+R t / 3\right)}\right) \quad \text { where } \quad \sigma^{2}:=\left\|\sum_{i=1}^{N} \mathbb{E} \boldsymbol{X}_{i}^{2}\right\|_{2}
$$

Theorem 2 (Weyl). For any symmetric $n \times n$ matrices \boldsymbol{A} and \boldsymbol{H},

$$
\lambda_{i}(\boldsymbol{A})+\lambda_{n}(\boldsymbol{H}) \leq \lambda_{i}(\boldsymbol{A}+\boldsymbol{H}) \leq \lambda_{i}(\boldsymbol{A})+\lambda_{1}(\boldsymbol{H}), \quad 1 \leq i \leq n
$$

where $\lambda_{i}(\cdot)$ denotes the i-th largest eigenvalue of its argument.
Theorem 3 (Weyl (again)). For any $m \times n$ matrices \boldsymbol{A} and \boldsymbol{E},

$$
\left|\sigma_{i}(\boldsymbol{A})-\sigma_{i}(\boldsymbol{A}+\boldsymbol{E})\right| \leq\|\boldsymbol{E}\|_{2}, \quad 1 \leq i \leq \min \{m, n\}
$$

where $\sigma_{i}(\cdot)$ denotes the i-th largest singular value of its argument.
Theorem 4 (Davis-Kahan). Let $\boldsymbol{A}=\boldsymbol{E}_{0} \boldsymbol{A}_{0} \boldsymbol{E}_{0}^{\top}+\boldsymbol{E}_{1} \boldsymbol{A}_{1} \boldsymbol{E}_{1}^{\top}$ and $\boldsymbol{A}+\boldsymbol{H}=\boldsymbol{F}_{0} \boldsymbol{\Lambda}_{0} \boldsymbol{F}_{0}^{\top}+\boldsymbol{F}_{1} \boldsymbol{\Lambda}_{1} \boldsymbol{F}_{1}^{\top}$ be symmetric matrices with $\left[\boldsymbol{E}_{0}, \boldsymbol{E}_{1}\right]$ and $\left[\boldsymbol{F}_{0}, \boldsymbol{F}_{1}\right]$ orthogonal. If the eigenvalues of \boldsymbol{A}_{0} are contained in an interval (a, b), and the eigenvalues of $\boldsymbol{\Lambda}_{1}$ are excluded from the interval $(a-\delta, b+\delta)$ for some $\delta>0$, then

$$
\left\|\boldsymbol{F}_{1}^{\top} \boldsymbol{E}_{0}\right\|_{2} \leq \frac{\left\|\boldsymbol{F}_{1}^{\top} \boldsymbol{H} \boldsymbol{E}_{0}\right\|_{2}}{\delta}
$$

Theorem 5 (Wedin). Suppose matrices $\boldsymbol{A}, \widetilde{\boldsymbol{A}} \in \mathbb{R}^{m \times n}$ may be written as

$$
\boldsymbol{A}=\boldsymbol{U}_{1} \boldsymbol{S}_{1} \boldsymbol{V}_{1}^{\top}+\boldsymbol{U}_{2} \boldsymbol{S}_{2} \boldsymbol{V}_{2}^{\top}, \quad \widetilde{\boldsymbol{A}}=\tilde{\boldsymbol{U}}_{1} \widetilde{\boldsymbol{S}}_{1} \tilde{\boldsymbol{V}}_{1}^{\top}+\widetilde{\boldsymbol{U}}_{2} \widetilde{\boldsymbol{S}}_{2} \tilde{\boldsymbol{V}}_{2}^{\top}
$$

where $\boldsymbol{U}_{1}^{\top} \boldsymbol{U}_{1}={\underset{\sim}{V}}_{1}^{\top} \boldsymbol{V}_{1}=\boldsymbol{I}, \boldsymbol{U}_{2}^{\top} \boldsymbol{U}_{2}=\boldsymbol{V}_{2}^{\top} \boldsymbol{V}_{2}=\boldsymbol{I}, \tilde{\boldsymbol{U}}_{1}^{\top} \tilde{\boldsymbol{U}}_{1}=\tilde{\boldsymbol{V}}_{1}^{\top} \tilde{\boldsymbol{V}}_{1}=\boldsymbol{I}$, and $\tilde{\boldsymbol{U}}_{2}^{\top} \tilde{\boldsymbol{U}}_{2}=\tilde{\boldsymbol{V}}_{2}^{\top} \tilde{\boldsymbol{V}}_{2}=\boldsymbol{I}$; and $\boldsymbol{S}_{1}, \boldsymbol{S}_{2}, \widetilde{\boldsymbol{S}}_{1}, \widetilde{\boldsymbol{S}}_{2}$ are diagonal and non-negative. If there exists $\alpha>0$ and $\delta>0$ such that the smallest singular value in \boldsymbol{S}_{1} is at least $\alpha+\delta$, and the largest singular value in $\widetilde{\boldsymbol{S}}_{2}$ is at most α, then

$$
\max \left\{\left\|\boldsymbol{U}_{2}^{\top} \tilde{\boldsymbol{U}}_{1}\right\|_{2},\left\|\boldsymbol{V}_{2}^{\top} \tilde{\boldsymbol{V}}_{1}\right\|_{2}\right\} \leq \frac{\max \left\{\left\|(\widetilde{\boldsymbol{A}}-\boldsymbol{A}) \boldsymbol{V}_{1}\right\|_{2},\left\|\boldsymbol{U}_{1}^{\top}(\widetilde{\boldsymbol{A}}-\boldsymbol{A})\right\|_{2}\right\}}{\delta}
$$

