COMS 4772 Fall 2016 Homework 2
 Due Friday, October 28

Instructions:

- The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about. html) are, of course, in effect.
- Using this $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ template will be helpful for grading purposes.

Problem 1 (25 points). Let \boldsymbol{X} be a random vector in \mathbb{R}^{d} whose distribution is a mixture of k spherical Gaussians:

$$
\boldsymbol{X} \sim \pi_{1} \mathrm{~N}\left(\boldsymbol{\mu}_{1}, \sigma_{1}^{2} \boldsymbol{I}\right)+\pi_{2} \mathrm{~N}\left(\boldsymbol{\mu}_{2}, \sigma_{2}^{2} \boldsymbol{I}\right)+\cdots+\pi_{k} \mathrm{~N}\left(\boldsymbol{\mu}_{k}, \sigma_{k}^{2} \boldsymbol{I}\right) .
$$

For any set $C \subset \mathbb{R}^{d}$, define

$$
\operatorname{cost}(C):=\mathbb{E}\left[\min _{\boldsymbol{y} \in C}\|\boldsymbol{X}-\boldsymbol{y}\|_{2}^{2}\right] .
$$

Let $M:=\left\{\boldsymbol{\mu}_{1}, \boldsymbol{\mu}_{2}, \ldots, \boldsymbol{\mu}_{k}\right\}$. Prove that if $k<e^{d / 2}$, then

$$
\operatorname{cost}(M) \leq \frac{1}{1-\frac{2 \ln (k)}{d}} \cdot \min _{\substack{C \subset \mathbb{R}^{d} d \\|C| \leq k}} \operatorname{cost}(C)
$$

Solution.

Problem 2 (25 points). Suppose $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n \times d}$ each have rank d. Give unambiguous pseudocode for an algorithm that, when given \boldsymbol{A} and \boldsymbol{B} as inputs, finds all solutions $\boldsymbol{v} \in S^{d-1}$ satisfying

$$
\exists \lambda \in \mathbb{R} \backslash\{0\} \text { s.t. } \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{B}^{\top} \boldsymbol{B} \boldsymbol{v} .
$$

If there is an entire subspace of solutions, the algorithm just needs to return an orthonormal basis for this subspace. Your pseudocode can use things like SVD, Gram-Schmidt, etc. as black-box subroutines. Prove that the algorithm is correct.

Solution.

Problem 3 (25 points). Let $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ be a data matrix whose rows are $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n} \in \mathbb{R}^{d}$. Let $\boldsymbol{D} \in \mathbb{R}^{n \times n}$ be the matrix whose (i, j)-th entry is the squared Euclidean distance $D_{i, j}=\left\|\boldsymbol{a}_{i}-\boldsymbol{a}_{j}\right\|_{2}^{2}$. Suppose you are given the squared Euclidean distance matrix \boldsymbol{D} as input, and you are asked to recover the set of original points $\left\{\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}\right\}$ up to some translation. You do not have access to the original data matrix \boldsymbol{A}.
(a) Let $s \in \mathbb{R}^{n}$ be the vector whose i-th entry is $\left\|a_{i}\right\|_{2}^{2}$. Prove that $D=s \mathbf{1}_{n}^{\top}-2 A A^{\top}+\mathbf{1}_{n} \boldsymbol{s}^{\top}$, where $\mathbf{1}_{n} \in \mathbb{R}^{n}$ is the all-ones vector.
(b) Let $\Pi \in \mathbb{R}^{n \times n}$ be the orthogonal projector for the ($n-1$)-dimensional subspace

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{n}:\left\langle\mathbf{1}_{n}, \boldsymbol{x}\right\rangle=0\right\}
$$

Prove that -(1/2) $\boldsymbol{\Pi} \boldsymbol{D} \boldsymbol{\Pi}=\boldsymbol{\Pi} \boldsymbol{A} \boldsymbol{A}^{\top} \boldsymbol{\Pi}$.
(c) Explain how to determine points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{d}$ from \boldsymbol{D} such that:

- $D_{i, j}=\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}$ for all $i, j \in[n]$; and
- $\sum_{i=1}^{n} \boldsymbol{x}_{i}=\mathbf{0}$.
(You may assume that you are told the original dimension d.)
(d) Optional. Suppose the matrix \boldsymbol{D} is corrupted (say, because your distance measuring device is imperfect), so the entries no longer correspond to the squared Euclidean distances between the \boldsymbol{a}_{i}. Explain how to determine points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n} \in \mathbb{R}^{n}$ (yes, n and not d) from \boldsymbol{D} such that:
- $\sum_{i=1}^{n} \boldsymbol{x}_{i}=\mathbf{0}$;
- $\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2} \geq D_{i, j}$ for all $i \neq j$; and
- $\max \left\{\frac{\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|_{2}^{2}}{D_{i, j}}: 1 \leq i<j \leq n\right\}$ is as small as possible.

Hint: use semidefinite programming.

Solution.

Problem 4 (25 points). Exercise 3.25 from BHK.
Solution.

