COMS 4772 Fall 2016 Homework 1 Due Friday, September 30

Instructions:

- Pick four of the following five problems to be graded. (If you do not designate which problems should be graded, we will pick arbitrarily for you.)
- The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about. html) are, of course, in effect.
- Using this $\square T_E X$ template will be helpful for grading purposes.

Problem 1 (25 points). In this problem, "volume" refers to (d-1)-dimensional volume (or "surface area" in *d*-dimensions).

(a) Prove that there is a constant C > 0 (not depending on d) such that, for any set $T \subset S^{d-1}$ of $|T| = d^{100}$ unit vectors, the set

$$\bigcap_{\boldsymbol{u}\in T}\left\{\boldsymbol{x}\in S^{d-1}: \left|\langle\boldsymbol{u},\boldsymbol{x}\rangle\right|\leq C\sqrt{\frac{\ln d}{d}}\right\}$$

accounts for 99% of the volume of S^{d-1} . (Assume $d \ge 2$ so $\ln(d) > 0$.)

(b) Prove that there is a constant c > 0 (not depending on d) such that, for any $u \in S^{d-1}$, the set

$$\left\{ \boldsymbol{x} \in S^{d-1} : \left| \langle \boldsymbol{u}, \boldsymbol{x} \rangle \right| > \frac{c}{\sqrt{d}} \right\}$$

accounts for 99% of the volume of S^{d-1} .

Solution.

Problem 2 (25 points). Let $B_1^d := \{ x \in \mathbb{R}^d : \sum_{i=1}^d |x_i| \le 1 \}$ denote the *d*-dimensional cross polytope (as explained in Ball's lecture notes).

- (a) Prove that $B^d \subseteq \sqrt{d}B_1^d$.
- (b) Use the fact $B^d \subseteq \sqrt{d}B_1^d$ to derive a bound on the volume of B^d of the form

$$\operatorname{vol}(B^d) \leq c \cdot \left(\frac{c'}{d}\right)^{d/2}$$

for some positive constants c, c' > 0. Explain each step in your derivation.

Hint: Stirling's approximation implies $\sqrt{2\pi}n^{n+1/2}e^{-n} \le n! \le n^{n+1/2}e^{1-n}$ for all $n \in \mathbb{N}$.

Solution.

Problem 3 (25 points). Let X be an [a, b]-valued random variable (i.e., $\mathbb{P}(X \in [a, b]) = 1$) with $\mathbb{E}(X) = 0$. For simplicity, assume X has a probability density function f. In this problem, you will prove $\psi_X(\lambda) \leq \lambda^2(b-a)^2/8$ using a technique due to McAllester and Ortiz (2003).

(a) Consider the family of density functions $\{g_{\lambda} : \lambda \in \mathbb{R}\}$, where

$$g_{\lambda}(x) := \frac{e^{\lambda x}}{\mathbb{E}e^{\lambda X}} f(x) \text{ for all } x \in \mathbb{R}.$$

Briefly verify that if $Y_{\lambda} \sim g_{\lambda}$, then

$$\mathbb{E}(Y_{\lambda}) = \psi'_{X}(\lambda),$$

var $(Y_{\lambda}) = \psi''_{X}(\lambda),$

where ψ'_X is the first-derivative of ψ_X , and ψ''_X is the second-derivative of ψ_X . (You don't need to write much at all for this part.)

- (b) Prove that any [a, b]-valued random variable has variance at most $(b a)^2/4$.
- (c) The fundamental theorem of calculus implies

$$\psi_X(\lambda) = \int_0^\lambda \int_0^\mu \psi_X''(\gamma) \,\mathrm{d}\gamma \,\mathrm{d}\mu \,.$$

Use this identity and the results of parts (a) and (b) to prove that $\psi_X(\lambda) \leq \lambda^2 (b-a)^2/8$. Solution. **Problem 4** (25 points). Let U be a random unit vector with the uniform density on S^{d-1} , and let $X := \langle v, U \rangle$, where v is a fixed unit vector in S^{d-1} .

- (a) Prove that $\psi_{X^2-\mathbb{E}(X^2)}(\lambda) \leq \psi_{Z^2-1}(\lambda/d)$ for all $\lambda \in \mathbb{R}$, where $Z \sim N(0, 1)$. *Hint*: You may use the fact that if $Y_d \sim \chi^2(d)$ and U are independent, then $\sqrt{Y_d}U \sim N(0, I)$ (standard multivariate Gaussian in \mathbb{R}^d). Jensen's inequality may also be useful.
- (b) Use the result of part (a) to derive a tail bound for $|X^2 \mathbb{E}(X^2)|$. Explain each step in your derivation.

Solution.

Problem 5 (25 points). Let $\Phi \colon \mathbb{R} \to [0, 1]$ denote the cumulative distribution function for N(0, 1), i.e., $\Phi(t) = \mathbb{P}(Z \leq t)$ where $Z \sim N(0, 1)$. Prove that for any $d \in \mathbb{N}$, if

- 1. X_1, X_2, \ldots, X_d are independent random variables;
- 2. $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^2 = 1$ for all $i \in [d]$;

then for a 1 - o(1) fraction of unit vectors $\boldsymbol{u} \in S^{d-1}$, the random vector $\boldsymbol{X} = (X_1, X_2, \dots, X_d)$ satisfies

$$\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\langle \boldsymbol{u}, \boldsymbol{X} \rangle \leq t \right) - \Phi(t) \right| \leq O\left(\frac{\rho}{d^{0.49}} \right) \,,$$

where $\rho := \max_{i \in [d]} \mathbb{E} |X_i|^3$.

You can use the following theorem (which you do not need to prove):

Theorem 1 (Berry-Esséen theorem). There is an absolute positive constant C > 0such that the following holds. Let Y_1, Y_2, \ldots, Y_n be independent random variables with $\mathbb{E}Y_i = 0, \ \sigma_i^2 := \mathbb{E}Y_i^2 < \infty$. Define $v_n := \sum_{i=1}^n \sigma_i^2$ and $\rho_n := \sum_{i=1}^n \mathbb{E}|Y_i|^3$. Then $\sup_{t \in \mathbb{R}} \left| \mathbb{P}\left(\frac{Y_1 + Y_2 + \cdots + Y_n}{\sqrt{v_n}} \le t \right) - \Phi(t) \right| \le \frac{C\rho_n}{v_n^{3/2}}.$

Solution.

References

D. McAllester and L. Ortiz. Concentration inequalities for the missing mass and for histogram rule error. *Journal of Machine Learning Research*, 4(Oct):895–911, 2003.