COMS 4772 Fall 2016 Homework 1 Due Friday, September 30

Instructions:

- Pick four of the following five problems to be graded. (If you do not designate which problems should be graded, we will pick arbitrarily for you.)
- The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about. html) are, of course, in effect.
- Using this $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ template will be helpful for grading purposes.

Problem 1 (25 points). In this problem, "volume" refers to ($d-1$)-dimensional volume (or "surface area" in d-dimensions).
(a) Prove that there is a constant $C>0$ (not depending on d) such that, for any set $T \subset S^{d-1}$ of $|T|=d^{100}$ unit vectors, the set

$$
\bigcap_{\boldsymbol{u} \in T}\left\{\boldsymbol{x} \in S^{d-1}:|\langle\boldsymbol{u}, \boldsymbol{x}\rangle| \leq C \sqrt{\frac{\ln d}{d}}\right\}
$$

accounts for 99% of the volume of S^{d-1}. (Assume $d \geq 2$ so $\ln (d)>0$.)
(b) Prove that there is a constant $c>0$ (not depending on d) such that, for any $\boldsymbol{u} \in S^{d-1}$, the set

$$
\left\{\boldsymbol{x} \in S^{d-1}:|\langle\boldsymbol{u}, \boldsymbol{x}\rangle|>\frac{c}{\sqrt{d}}\right\}
$$

accounts for 99% of the volume of S^{d-1}.

Solution.

Problem 2 (25 points). Let $B_{1}^{d}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d}: \sum_{i=1}^{d}\left|x_{i}\right| \leq 1\right\}$ denote the d-dimensional cross polytope (as explained in Ball's lecture notes).
(a) Prove that $B^{d} \subseteq \sqrt{d} B_{1}^{d}$.
(b) Use the fact $B^{d} \subseteq \sqrt{d} B_{1}^{d}$ to derive a bound on the volume of B^{d} of the form

$$
\operatorname{vol}\left(B^{d}\right) \leq c \cdot\left(\frac{c^{\prime}}{d}\right)^{d / 2}
$$

for some positive constants $c, c^{\prime}>0$. Explain each step in your derivation.
Hint: Stirling's approximation implies $\sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq n^{n+1 / 2} e^{1-n}$ for all $n \in \mathbb{N}$. Solution.

Problem 3 (25 points). Let X be an $[a, b]$-valued random variable (i.e., $\mathbb{P}(X \in[a, b])=1)$ with $\mathbb{E}(X)=0$. For simplicity, assume X has a probability density function f. In this problem, you will prove $\psi_{X}(\lambda) \leq \lambda^{2}(b-a)^{2} / 8$ using a technique due to McAllester and Ortiz (2003).
(a) Consider the family of density functions $\left\{g_{\lambda}: \lambda \in \mathbb{R}\right\}$, where

$$
g_{\lambda}(x):=\frac{e^{\lambda x}}{\mathbb{E} e^{\lambda X}} f(x) \quad \text { for all } x \in \mathbb{R}
$$

Briefly verify that if $Y_{\lambda} \sim g_{\lambda}$, then

$$
\begin{aligned}
\mathbb{E}\left(Y_{\lambda}\right) & =\psi_{X}^{\prime}(\lambda) \\
\operatorname{var}\left(Y_{\lambda}\right) & =\psi_{X}^{\prime \prime}(\lambda)
\end{aligned}
$$

where ψ_{X}^{\prime} is the first-derivative of ψ_{X}, and $\psi_{X}^{\prime \prime}$ is the second-derivative of ψ_{X}. (You don't need to write much at all for this part.)
(b) Prove that any $[a, b]$-valued random variable has variance at most $(b-a)^{2} / 4$.
(c) The fundamental theorem of calculus implies

$$
\psi_{X}(\lambda)=\int_{0}^{\lambda} \int_{0}^{\mu} \psi_{X}^{\prime \prime}(\gamma) \mathrm{d} \gamma \mathrm{~d} \mu
$$

Use this identity and the results of parts (a) and (b) to prove that $\psi_{X}(\lambda) \leq \lambda^{2}(b-a)^{2} / 8$. Solution.

Problem 4 (25 points). Let \boldsymbol{U} be a random unit vector with the uniform density on S^{d-1}, and let $X:=\langle\boldsymbol{v}, \boldsymbol{U}\rangle$, where \boldsymbol{v} is a fixed unit vector in S^{d-1}.
(a) Prove that $\psi_{X^{2}-\mathbb{E}\left(X^{2}\right)}(\lambda) \leq \psi_{Z^{2}-1}(\lambda / d)$ for all $\lambda \in \mathbb{R}$, where $Z \sim \mathrm{~N}(0,1)$.

Hint: You may use the fact that if $Y_{d} \sim \chi^{2}(d)$ and \boldsymbol{U} are independent, then $\sqrt{Y_{d}} \boldsymbol{U} \sim \mathrm{~N}(\mathbf{0}, \boldsymbol{I})$ (standard multivariate Gaussian in \mathbb{R}^{d}). Jensen's inequality may also be useful.
(b) Use the result of part (a) to derive a tail bound for $\left|X^{2}-\mathbb{E}\left(X^{2}\right)\right|$. Explain each step in your derivation.

[^0]Problem 5 (25 points). Let $\Phi: \mathbb{R} \rightarrow[0,1]$ denote the cumulative distribution function for $\mathrm{N}(0,1)$, i.e., $\Phi(t)=\mathbb{P}(Z \leq t)$ where $Z \sim \mathrm{~N}(0,1)$. Prove that for any $d \in \mathbb{N}$, if

1. $X_{1}, X_{2}, \ldots, X_{d}$ are independent random variables;
2. $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i}^{2}=1$ for all $i \in[d]$;
then for a $1-o(1)$ fraction of unit vectors $\boldsymbol{u} \in S^{d-1}$, the random vector $\boldsymbol{X}=\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ satisfies

$$
\sup _{t \in \mathbb{R}}|\mathbb{P}(\langle\boldsymbol{u}, \boldsymbol{X}\rangle \leq t)-\Phi(t)| \leq O\left(\frac{\rho}{d^{0.49}}\right),
$$

where $\rho:=\max _{i \in[d]} \mathbb{E}\left|X_{i}\right|^{3}$.
You can use the following theorem (which you do not need to prove):
Theorem 1 (Berry-Esséen theorem). There is an absolute positive constant $C>0$ such that the following holds. Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random variables with $\mathbb{E} Y_{i}=0, \sigma_{i}^{2}:=\mathbb{E} Y_{i}^{2}<\infty$. Define $v_{n}:=\sum_{i=1}^{n} \sigma_{i}^{2}$ and $\rho_{n}:=\sum_{i=1}^{n} \mathbb{E}\left|Y_{i}\right|^{3}$. Then

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\frac{Y_{1}+Y_{2}+\cdots+Y_{n}}{\sqrt{v_{n}}} \leq t\right)-\Phi(t)\right| \leq \frac{C \rho_{n}}{v_{n}^{3 / 2}}
$$

Solution.

References

D. McAllester and L. Ortiz. Concentration inequalities for the missing mass and for histogram rule error. Journal of Machine Learning Research, 4(Oct):895-911, 2003.

[^0]: Solution.

