
COMS 4772 Fall 2016 Homework 1

Due Friday, September 30

Instructions:

• Pick four of the following five problems to be graded. (If you do not designate which problems
should be graded, we will pick arbitrarily for you.)

• The usual homework policies (http://www.cs.columbia.edu/~djhsu/coms4772-f16/about.
html) are, of course, in effect.

• Using this LATEX template will be helpful for grading purposes.
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Problem 1 (25 points). In this problem, “volume” refers to (d−1)-dimensional volume (or “surface
area” in d-dimensions).

(a) Prove that there is a constant C > 0 (not depending on d) such that, for any set T ⊂ Sd−1

of |T | = d100 unit vectors, the set

⋂
u∈T

{
x ∈ Sd−1 :

∣∣〈u,x〉∣∣ ≤ C√ ln d

d

}

accounts for 99% of the volume of Sd−1. (Assume d ≥ 2 so ln(d) > 0.)

(b) Prove that there is a constant c > 0 (not depending on d) such that, for any u ∈ Sd−1, the
set {

x ∈ Sd−1 :
∣∣〈u,x〉∣∣ > c√

d

}
accounts for 99% of the volume of Sd−1.

Solution. �
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Problem 2 (25 points). Let Bd
1 := {x ∈ Rd :

∑d
i=1 |xi| ≤ 1} denote the d-dimensional cross poly-

tope (as explained in Ball’s lecture notes).

(a) Prove that Bd ⊆
√
dBd

1 .

(b) Use the fact Bd ⊆
√
dBd

1 to derive a bound on the volume of Bd of the form

vol(Bd) ≤ c ·
(
c′

d

)d/2
for some positive constants c, c′ > 0. Explain each step in your derivation.

Hint : Stirling’s approximation implies
√

2πnn+1/2e−n ≤ n! ≤ nn+1/2e1−n for all n ∈ N.

Solution. �
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Problem 3 (25 points). Let X be an [a, b]-valued random variable (i.e., P(X ∈ [a, b]) = 1) with
E(X) = 0. For simplicity, assume X has a probability density function f . In this problem, you will
prove ψX(λ) ≤ λ2(b− a)2/8 using a technique due to McAllester and Ortiz (2003).

(a) Consider the family of density functions {gλ : λ ∈ R}, where

gλ(x) :=
eλx

EeλX
f(x) for all x ∈ R .

Briefly verify that if Yλ ∼ gλ, then

E(Yλ) = ψ′X(λ) ,

var(Yλ) = ψ′′X(λ) ,

where ψ′X is the first-derivative of ψX , and ψ′′X is the second-derivative of ψX . (You don’t
need to write much at all for this part.)

(b) Prove that any [a, b]-valued random variable has variance at most (b− a)2/4.

(c) The fundamental theorem of calculus implies

ψX(λ) =

∫ λ

0

∫ µ

0
ψ′′X(γ) dγ dµ .

Use this identity and the results of parts (a) and (b) to prove that ψX(λ) ≤ λ2(b− a)2/8.

Solution. �
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Problem 4 (25 points). Let U be a random unit vector with the uniform density on Sd−1, and
let X := 〈v,U〉, where v is a fixed unit vector in Sd−1.

(a) Prove that ψX2−E(X2)(λ) ≤ ψZ2−1(λ/d) for all λ ∈ R, where Z ∼ N(0, 1).

Hint : You may use the fact that if Yd ∼ χ2(d) and U are independent, then
√
YdU ∼ N(0, I)

(standard multivariate Gaussian in Rd). Jensen’s inequality may also be useful.

(b) Use the result of part (a) to derive a tail bound for
∣∣X2 − E(X2)

∣∣. Explain each step in your
derivation.

Solution. �
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Problem 5 (25 points). Let Φ: R→ [0, 1] denote the cumulative distribution function for N(0, 1),
i.e., Φ(t) = P(Z ≤ t) where Z ∼ N(0, 1). Prove that for any d ∈ N, if

1. X1, X2, . . . , Xd are independent random variables;

2. EXi = 0 and EX2
i = 1 for all i ∈ [d];

then for a 1 − o(1) fraction of unit vectors u ∈ Sd−1, the random vector X = (X1, X2, . . . , Xd)
satisfies

sup
t∈R

∣∣∣P (〈u,X〉 ≤ t)− Φ(t)
∣∣∣ ≤ O

(
ρ

d0.49

)
,

where ρ := maxi∈[d] E|Xi|3.
You can use the following theorem (which you do not need to prove):

Theorem 1 (Berry-Esséen theorem). There is an absolute positive constant C > 0
such that the following holds. Let Y1, Y2, . . . , Yn be independent random variables with
EYi = 0, σ2i := EY 2

i <∞. Define vn :=
∑n

i=1 σ
2
i and ρn :=

∑n
i=1 E|Yi|3. Then

sup
t∈R

∣∣∣∣∣∣P
(
Y1 + Y2 + · · ·+ Yn√

vn
≤ t

)
− Φ(t)

∣∣∣∣∣∣ ≤ Cρn

v
3/2
n

.

Solution. �
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