COMS 4772 Fall 2015

Lecture 1
Selected topics in machine learning theory

• Mostly topics related to “unsupervised learning”.

• A tentative list (subject to time constraints):
 • Dimensionality reduction
 • Principal component analysis
 • Clustering
 • Sparse coding
 • Maximum entropy modeling
 • Online optimization and boosting

• We’ll look at algorithmic techniques for these tasks, and mathematical tools for analyzing their behavior.
Example: clustering
What is clustering for?

1. One use of clustering is to find “meaningful groups” in data.
 • Example: your data comes from a mixture of k subpopulations, and you want to learn about each of these subpopulations.

2. A different use is simply to find a small, finite approximation for very large or even infinite set.
 • Pick an objective function that measures how good the approximation is, and try to optimize it.

 Let’s consider this second use.
k-means clustering

- Given a data set $S \subseteq \mathbb{R}^d$, pick k points $T = \{y_1, y_2, \ldots, y_k\} \subset \mathbb{R}^d$ so as to minimize $\text{cost}(T) = \sum_{x \in S} \min_{y \in T} \|x - y\|_2^2$.

- Common question: “How do I pick k”?

- Cost of optimal k-means clustering decreases with k, perhaps like

 $O\left(\frac{1}{\sqrt{k}}\right)$ or $O\left(\frac{1}{k}\right)$.

- But k-means clustering is NP-hard, so we can’t always compute the optimal solution efficiently.
Approximate k-means clustering

• A c-approximation algorithm returns a solution T_k with cost
 \[\text{cost}(T_k) \leq c \cdot \text{cost}(\text{OPT}_k) \]

• For example, k-means++ is an $O(\log k)$-approximation algorithm.

 • If $\text{cost}(\text{OPT}_k) = O \left(\frac{1}{\sqrt{k}} \right)$, then $\text{cost}(T_k) = O \left(\frac{\log k}{\sqrt{k}} \right)$.

• Actually, k-means++ is also an (a, b)-approximation algorithm for some constants $a, b > 0$: returns a solution T_k with cost
 \[\text{cost}(T_k) \leq b \cdot \text{cost}(\text{OPT}_{k/a}) \]

 • If $\text{cost}(\text{OPT}_k) = O \left(\frac{1}{\sqrt{k}} \right)$, then $\text{cost}(T_k) = O \left(\frac{b}{\sqrt{k/a}} \right) = O \left(\frac{1}{\sqrt{k/a}} \right)$.
Mixture models

Now consider using clustering to find meaningful groups:

• Mixture model: data comes from a mixture of k distinct distributions.
• **Goal**: learn about the individual distributions in the mixture.
• Can a c-approximate k-means algorithm help?
• Can dimensionality reduction help?
Example: latent semantic analysis
Representing a corpus of documents

• Represent a corpus of documents by counts of words they contain:

\[
\begin{array}{c|cccc}
 & \text{aardvark} & \text{abacus} & \text{abalone} & \cdots \\
\hline
\text{document 1} & 3 & 0 & 0 & \cdots \\
\text{document 2} & 7 & 0 & 4 & \cdots \\
\text{document 3} & 2 & 4 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

• Matrix \(A \in \mathbb{R}^{n \times d} \), one row per document, one column per word.
• \(A_{i,j} = \# \) times word \(j \) appears in document \(i \).
Computing similarity between documents

- **Given a new document, how similar is it to existing documents?**
- **Measure of similarity:** (normalized) inner product between word count vectors.
- **Naïvely takes** $O(nd)$ **time to compute similarity between new document and existing documents.**

 [Or at least $O(\text{nnz}(A))$ time.]
- **However, if A is approximately low-rank, we could speed this up.**
- **Why could we hope for a good low-rank approximation of A?**
- **How can we compute such an approximation?**
Low-rank structure in latent semantic analysis

• A plausible modeling assumption:
 • $k \ll \min\{n, d\}$ topics, each represented by a distribution over words:
 $$\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}^d$$
 (each β_i is a probability vector).
 • Each document i is associated with a mixture of the k topics
 (i.e., a distribution over the k topics).
 • Document i’s count vector is drawn from a multinomial distribution with
 probabilities given by the document’s mixture of the β_i’s (“bag of words”).

• This implies that in expectation, the matrix A has rank $\ll \min\{n, d\}$.
Finding a low-rank approximation

- Under certain objective measures, optimal low-rank approximation is given by **low-rank singular value decomposition (SVD)**.
- How fast can we compute the SVD? $O(nd^2)$ or $O(n^2d)$ time.
 - Slow when n and d are large.
 - BUT: this is wasteful because we only want the top few components anyway.
- Can we compute a low-rank approximation more quickly?
Approximating a low-rank approximation

• “Sketch-and-solve” algorithm:
 • Apply a random linear map to every column of \(A \), call the resulting matrix \(B \).
 • For example, a random partial Fourier transform.
 • Use a fast least squares algorithm to approximately project the rows of \(A \) onto the row space of \(B \).
 • Such a fast least squares algorithm can be devised using random linear maps.
 • Compute a low-rank approximation of the projected rows of \(A \).

• Running time is \(\tilde{O}\left((n + d)k^2 + \text{poly}(k) \right) \) for rank-\(k \) approximation.
 • Compare to \(O(nd^2) \) or \(O(n^2d) \) time for full SVD.

• Output is a near-optimal low-rank approximation to \(A \).
More about the course
What this course is not

• A course on the theory of supervised learning.
 • See COMS 4254 (Introduction to Computational Learning Theory).

• A course on probabilistic modeling.
 • We’ll discuss some very simple probabilistic models, but very little about their actual development or application.
 • See STAT 6509 (Foundations of Graphical Models).

• A course on how to apply PCA, k-means, etc. to your data.
 • Theory may shed some light on when these techniques are applicable.
 • But we will abstract away a lot of practical details in order to get at the mathematical core of these problems.
Course (pre-)requirements

• Prerequisites (we will assess some of these with a calibration quiz):
 • Machine learning (at the level of COMS 4771 or STAT 4400)
 • Algorithms and data structures (at the level of CSOR 4231)
 • Linear algebra and probability.
 • Also some calculus and statistics.

• Course requirements:
 • Around four problem sets (50% of the grade); see website for instructions.
 • A project and possible oral presentation (50% of the grade); details to come.
Resources

• All course information and materials will be available on the website http://www.cs.columbia.edu/~djhsu/coms4772-f15
• Instructor: Daniel Hsu
• Office hours: Wednesdays 2:30-4:30 PM in 702 CEPSR.
• Course assistants: Chang Chen, Angus Ding
• Course e-mail: coms4772@gmail.com

• More information to be posted on the website.