Problem 1. Suppose \(n\) data points \(S \subset \mathbb{R}^d\) are partitioned into \(k\) subsets \(S_1, S_2, \ldots, S_k\); let \(\mu_j := \text{mean}(S_j)\) for each \(j \in [k]\). Let \(A \in \mathbb{R}^{n \times d}\) be the data matrix (whose rows are the points in \(S\)), and let \(M \in \mathbb{R}^{n \times d}\) be the matrix whose \(i\)-th row is \(\mu_j^\top\) when the \(i\)-th data point belongs to \(S_j\). Let \(\Pi\) denote the orthogonal projector to the top \(k\)-dimensional (uncentered) PCA subspace \(W\) for \(S\); let \(\tilde{S} \subset W\) be the \(\Pi\)-projected data points (i.e., the rows of \(A\Pi\)).

Assume, for some \(c_0 \geq 1\), that \(C \subset W\) is a set of representatives with \(k\)-means cost on \(\tilde{S}\) at most \(c_0\) times optimal (among representatives in \(W\)):

\[
\text{cost}(\tilde{S}, \hat{C}) \leq c_0 \cdot \min_{C \subset W: |C|=k} \text{cost}(\tilde{S}, C).
\]

Instructions: Do at least two parts among (a), (b), and (c); and also do part (d).

(a) Modify the proof from the \(k\)-means notes to deduce that for each \(i \in [k]\),

\[
\|\mu_i - \hat{C}(\mu_i)\|_2^2 \leq \frac{1}{|S_i|} \left(1 + \sqrt{\frac{c_0 \cdot \max_j \|A - M\Pi\|_F^2}{\|A\Pi - M\|_F^2}}\right)^2 \|A\Pi - M\|_F^2.
\]

You can just explain, precisely, how the argument from the notes should be modified. Explain why \(\|A - M\Pi\|_F/\|A\Pi - M\|_F\) is at most one (assuming the denominator is non-zero).

(b) Prove that there is an absolute constant \(c \geq 1\) such that

\[
\|A\Pi - M\|_F^2 \leq c \cdot \min \left\{ \|A - M\|_F^2, k \|A - M\|_2^2 \right\}.
\]

(c) Suppose each \(x \in S_i\) is actually a random vector with distribution \(N(\mu_i, \sigma^2 I)\). We’ll use this assumption to prove a bound on \(\|A - M\|_2^2\). (Here, \(M\) remains the matrix whose rows are the \(\mu_i\).) Prove that with probability 0.99, \(\|A - M\|_2^2 \leq O(\sigma^2(n + d))\). Since this is fairly routine, you can just give a rough sketch of the argument.

Hint: There are many ways to do this, but one simple way is to use \(\chi^2\) tail bounds together with a covering argument.

(d) Continuing from (c), assume further that \(|S_i| = n/k\) for each \(i \in [k]\). Deduce an upper-bound on \(\max_{i \in [k]} \|\mu_i - \hat{C}(\mu_i)\|_2^2\) that holds with probability 0.99. It should be stated in terms of \(c_0, d, k, n, \) and \(\sigma\). Here, you can use the results from parts (a), (b), and (c), as well as big-\(O\) notation.

Problem 2. Let \(T\) be an undirected tree on \(n\) vertices \(V\). Consider the metric space \((V, \rho)\), where \(\rho\) is the shortest path metric on \(T\) (i.e., \(\rho(x,y) = \text{length of shortest path from } x \text{ to } y\)). Note that because \(T\) is a tree, the shortest path from \(x\) to \(y\) is actually the only path!

Instructions: Do at least two parts among (a), (b), and (c).

(a) Show how to construct an embedding \(f: (V, \rho) \to \ell_1^n\) with no distortion.

Hint: Remove a single leaf \(v \in T\), recursively construct the embedding for \(T \setminus \{v\}\) (into \(\ell_1^{n-1}\)), and then modify the embedding to also work with \(v\).
(b) Show how to find subtrees \(T' \) and \(T'' \) of \(T \) such that: (i) \(T' \) and \(T'' \) share a single vertex \(v_0 \in T \) and no edges, (ii) \(T = T' \cup T'' \), and (iii) \(\max\{|T'|, |T''|\} \leq 1 + \frac{3n}{4} \). (It is possible to do this with \(1 + \frac{2n}{3} \) instead of \(1 + \frac{3n}{4} \).)

(Here, \(|\cdot|\) denotes number of vertices.)

The following lemma is helpful:

Lemma 1. For any tree \(T \) on \(n \) vertices, there is a special vertex \(v_0 \in T \) such that \(T \setminus \{v_0\} \) is a forest of trees, each of which has at most \(\frac{n}{2} \) vertices.

You can use the lemma without proof, and also assume a blackbox algorithm for finding this special vertex \(v_0 \in T \).

(c) Show how to construct an embedding \(f: (V, \rho) \to \ell^k_\infty \) with no distortion and \(d = O(\log n) \).

Hint: Use divide and conquer, as suggested in (b). Here is a rough sketch of a possible approach.

1. If \(n \) is smaller than some absolute constant, just let \(f \) be the Fréchet embedding.
2. Otherwise, obtain subtrees \(T' \) and \(T'' \) as in (b), and recursively construct embeddings \(f': T' \to \ell^k_\infty \) and \(f'': T'' \to \ell^k_\infty \).
3. Modify \(f' \) and \(f'' \) so that the special vertex \(v_0 \in T' \cap T'' \) gets mapped to the same point (so \(f'(v_0) = f''(v_0) \)). (Can this be done without incurring any distortion?)
4. Construct a new embedding \(f: T \to \ell^{k+1}_\infty \):

\[
 f(x) := \begin{cases}
 (f'(x), \rho(x, v_0)) & \text{if } x \in T', \\
 (f''(x), -\rho(x, v_0)) & \text{if } x \in T''.
\end{cases}
\]

If you follow this sketch, fill in the details, and prove that it is correct.