Problem 1. Suppose n data points $S \subset \mathbb{R}^d$ are partitioned into k subsets S_1, S_2, \ldots, S_k; let $\mu_j := \text{mean}(S_j)$ for each $j \in [k]$. Let $A \in \mathbb{R}^{n \times d}$ be the data matrix (whose rows are the points in S), and let $M \in \mathbb{R}^{n \times d}$ be the matrix whose i-th row is μ_j^T when the i-th data point belongs to S_j. Let Π denote the orthogonal projector to the top k-dimensional (uncentered) PCA subspace W for S; let $\bar{S} \subset W$ be the Π-projected data points (i.e., the rows of $A\Pi$).

Assume, for some $c_0 \geq 1$, that $\bar{C} \subset W$ is a set of representatives with k-means cost on \bar{S} at most c_0 times optimal (among representatives in W):

$$\text{cost}(\bar{S}, \bar{C}) \leq c_0 \cdot \min_{C \subset W: |C| = k} \text{cost}(\bar{S}, C).$$

Instructions: Do at least two parts among (a), (b), and (c); and also do part (d).

(a) Modify the proof from the k-means notes to deduce that for each $i \in [k],$

$$\|\mu_i - \bar{C}(\mu_i)\|_2^2 \leq \frac{1}{|S_i|} \left(1 + \sqrt{\frac{c_0 \cdot \|\left(A - M \right) \Pi \|_F^2}{\|A\Pi - M\|_F^2}} \right)^2 \|A\Pi - M\|_F^2.$$

You can just explain, precisely, how the argument from the notes should be modified. Explain why $\|\left(A - M \right) \Pi \|_F / \|A\Pi - M\|_F$ is at most one (assuming the denominator is non-zero).

(b) Prove that there is an absolute constant $c \geq 1$ such that

$$\|A\Pi - M\|_F^2 \leq c \cdot \min \left\{ \|A - M\|_F^2, k \|A - M\|_2^2 \right\}.$$

(c) Suppose each $x \in S_i$ is actually a random vector with distribution $N(\mu_i, \sigma^2 I)$. We’ll use this assumption to prove a bound on $\|A - M\|_2^2$. (Here, M remains the matrix whose rows are the μ_i^T.) Prove that with probability 0.99, $\|A - M\|_2^2 \leq O(\sigma^2(n + d))$. Since this is fairly routine, you can just give a rough sketch of the argument.

Hint: There are many ways to do this, but one simple way is to use χ^2 tail bounds together with a covering argument.

(d) Continuing from (c), assume further that $|S_i| = n/k$ for each $i \in [k]$. Deduce an upper-bound on $\max_{i \in [k]} \|\mu_i - \bar{C}(\mu_i)\|_2^2$ that holds with probability 0.99. It should be stated in terms of $c_0, d, k, n,$ and σ. Here, you can use the results from parts (a), (b), and (c), as well as big-O notation.

Problem 2. Let T be an undirected tree on n vertices V. Consider the metric space (V, ρ), where ρ is the shortest path metric on T (i.e., $\rho(x, y) =$ length of shortest path from x to y). Note that because T is a tree, the shortest path from x to y is actually the only path!

Instructions: Do at least two parts among (a), (b), and (c).

(a) Show how to construct an embedding $f: (V, \rho) \to \ell_1^n$ with no distortion.

Hint: Remove a single leaf $v \in T$, recursively construct the embedding for $T \setminus \{v\}$ (into ℓ_1^{n-1}), and then modify the embedding to also work with v.

1
(b) Show how to find subtrees T' and T'' of T such that: (i) T' and T'' share a single vertex $v_0 \in T$ and no edges, (ii) $T = T' \cup T''$, and (iii) $\max\{|T'|, |T''|\} \leq 1 + 3n/4$. (It is possible to do this with $1 + 2n/3$ instead of $1 + 3n/4$.)

(Here, $|\cdot|$ denotes number of vertices.)

The following lemma is helpful:

Lemma 1. For any tree T on n vertices, there is a special vertex $v_0 \in T$ such that $T \setminus \{v_0\}$ is a forest of trees, each of which has at most $n/2$ vertices.

You can use the lemma without proof, and also assume a blackbox algorithm for finding this special vertex $v_0 \in T$.

(c) Show how to construct an embedding $f: (V, \rho) \to \ell^k_\infty$ with no distortion and $d = O(\log n)$.

Hint: Use divide and conquer, as suggested in (b). Here is a rough sketch of a possible approach.

1. If n is smaller than some absolute constant, just let f be the Fréchet embedding.
2. Otherwise, obtain subtrees T' and T'' as in (b), and recursively construct embeddings $f': T' \to \ell^k_\infty$ and $f'': T'' \to \ell^k_\infty$.
3. Modify f' and f'' so that the special vertex $v_0 \in T' \cap T''$ gets mapped to the same point (so $f'(v_0) = f''(v_0)$). (Can this be done without incurring any distortion?)
4. Construct a new embedding $f: T \to \ell^{k+1}_\infty$:

$$f(x) := \begin{cases} (f'(x), \rho(x, v_0)) & \text{if } x \in T', \\ (f''(x), -\rho(x, v_0)) & \text{if } x \in T''. \end{cases}$$

If you follow this sketch, fill in the details, and prove that it is correct.