Problem 1. Consider the parametric family of probability densities \(\mathcal{P} := \{ p_{\mu, \sigma^2} : \mu \in \mathbb{R}^d, \sigma^2 > 0 \} \) over \(\mathbb{R}^d \), where \(p_{\mu, \sigma^2} \) is the density for \(N(\mu, \sigma^2 I) \). Specify the maximum likelihood estimator (MLE) for the parameters \((\mu, \sigma^2) \) based on a data set \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d \). Also give a precise condition on the data set under which the MLE produces legal parameter estimates (in particular, a necessary and sufficient condition on the data set under which the MLE for \(\sigma^2 \) is strictly positive).

Problem 2. Prove that there exists an absolute constant \(C > 0 \) such that for any \(d, k, s \in \mathbb{N} \) where \(s \) divides \(k, k \geq C \), and \(s > \sqrt{6k \ln(d)} \), there exists vectors \(c_1, c_2, \ldots, c_d \in \{0, 1\}^k \) satisfying both of the following properties.

1. Each \(c_i \) has exactly \(s \) non-zero entries.
2. \(\langle c_i, c_j \rangle \leq \frac{2s^2}{k} \) for all \(1 \leq i < j \leq d \).

Hint: It is possible to choose the \(c_i \) so that each vector \(c_i \) can be thought of as being comprised of \(s \) blocks of coordinates, with each block containing \(k/s \) coordinates, and there is only a single non-zero entry within each block.

Problem 3. Let \(X \sim N(0, \Sigma) \), where \(\Sigma \in \mathbb{R}^{d \times d} \) (for some \(d \gg 2 \)) has exactly two non-zero eigenvalues, both equal to one. Consider a random two-dimensional subspace \(T \subset \mathbb{R}^d \) produced by choosing a unit vector \(U \) uniformly at random from \(S^{d-1} \), then choosing a second unit vector \(U' \) uniformly at random among unit vectors orthogonal to \(U \), and finally setting \(T := \text{span}\{U, U'\} \). Also let \(W \subset \mathbb{R}^d \) be the top two-dimensional PCA subspace for \(X \). What is the expected squared-length of the orthogonal projection of \(X \) to \(T \)? And what is the expected squared-length of the orthogonal projection of \(X \) to \(W \)?

Problem 4. This problem is about \(k \)-means clustering and low-dimensional linear maps.

For any \(k, n \in \mathbb{N} \), a \(k \)-partitioning of \([n] := \{1, 2, \ldots, n\} \) is a collection of subsets \(C_1, C_2, \ldots, C_k \subseteq [n] \) such that \(C_i \cap C_j = \emptyset \) and \(\bigcup_{i=1}^k C_i = [n] \). Let \(\Pi(k, n) \) denote the set of all \(k \)-partitionings of \([n] \).

For any \(d, k, n \in \mathbb{N} \), any \((C_1, C_2, \ldots, C_k) \in \Pi(k, n) \), and any data set \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d \), define

\[
\text{cost}(x_1, x_2, \ldots, x_n; C_1, C_2, \ldots, C_k) := \sum_{i=1}^k \min_{c_i \in \mathbb{R}^d} \sum_{j \in C_i} \| x_j - c_i \|_2^2.
\]

The \(k \)-means clustering problem concerns finding \((C_1, C_2, \ldots, C_k) \in \Pi(k, n) \) so as to minimize \(\text{cost}(x_1, x_2, \ldots, x_n; C_1, C_2, \ldots, C_k) \).

(a) Prove that for any iid random vectors \(X \) and \(Y \), and any other vector \(c \),

\[
\mathbb{E} \| X - c \|_2^2 = \mathbb{E} \| X - \mathbb{E} X \|_2^2 + \| c - \mathbb{E} X \|_2^2 = \frac{1}{2} \mathbb{E} \| X - Y \|_2^2 + \| c - \mathbb{E} X \|_2^2.
\]

Use this result to prove that for any \(x_1, x_2, \ldots, x_m \in \mathbb{R}^d \),

\[
\min_{c \in \mathbb{R}^d} \sum_{i=1}^m \| x_i - c \|_2^2 = \sum_{i=1}^m \| x_i - \mu \|_2^2 = \frac{1}{2m} \sum_{i=1}^m \sum_{j=1}^m \| x_i - x_j \|_2^2,
\]

where \(\mu := \frac{1}{m} \sum_{i=1}^m x_i \).
(b) Prove that for any $\varepsilon \in (0,1/2)$ and any data set $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, there exists a positive integer $p \leq 100 \ln(n)/\varepsilon^2$ and a matrix $M \in \mathbb{R}^{p \times d}$ such that for any $k \in \mathbb{N}$ and any $(C_1, C_2, \ldots, C_k) \in \Pi(k, n)$,

$$\alpha = (1 - \varepsilon) \cdot \text{cost}(x_1, x_2, \ldots, x_n; C_1, C_2, \ldots, C_k) \leq \text{cost}(Mx_1, Mx_2, \ldots, Mx_n; C_1, C_2, \ldots, C_k) \leq (1 + \varepsilon) \cdot \text{cost}(x_1, x_2, \ldots, x_n; C_1, C_2, \ldots, C_k).$$

(c) Use the result of (b) to prove that for any $\varepsilon \in (0,1/2)$ and data set $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$, if

(i) $M \in \mathbb{R}^{p \times d}$ satisfies the property from (b) for the given value of ε and data set x_1, x_2, \ldots, x_n;

(ii) $(\bar{C}_1, \bar{C}_2, \ldots, \bar{C}_k) \in \text{arg min}_{(C_1, C_2, \ldots, C_k) \in \Pi(k, n)} \text{cost}(Mx_1, Mx_2, \ldots, Mx_n; C_1, C_2, \ldots, C_k)$;

then

$$\text{cost}(x_1, x_2, \ldots, x_n; \bar{C}_1, \bar{C}_2, \ldots, \bar{C}_k) \leq \frac{1 + \varepsilon}{1 - \varepsilon} \cdot \min_{(C_1, C_2, \ldots, C_k) \in \Pi(k, n)} \text{cost}(x_1, x_2, \ldots, x_n; C_1, C_2, \ldots, C_k).$$

Problem 5. Let $\Phi : \mathbb{R} \rightarrow [0,1]$ denote the cumulative distribution function for $N(0,1)$, i.e., $\Phi(t) = \mathbb{P}(Z \leq t)$ where $Z \sim N(0,1)$. Prove the Diaconis-Freedman result on projection pursuit: specifically, prove that there are absolute positive constants $c_0, C_1, c_2, C_3, c_4 > 0$ such that for any $d \in \mathbb{N}$ with $d^{c_0} \geq \ln(C_1)/c_2$, if

1. X_1, X_2, \ldots, X_d are independent random variables;
2. $\mathbb{E}X_i = 0$ and $\mathbb{E}X_i^2 = 1$ for all $i \in [d]$;

then for a $1-C_1 \exp(-c_2d^{c_0})$ fraction of unit vectors $u \in S^{d-1}$, the random vector $X = (X_1, X_2, \ldots, X_d)$ satisfies

$$\alpha = \max_{t \in \mathbb{R}} \mathbb{P}(\langle u, X \rangle \leq t) - \Phi(t) \leq \frac{C_3 \rho}{d^{c_4}},$$

where $\rho := \max_{i \in [d]} \mathbb{E}|X_i|^3$.

You may/should use the following version of the central limit theorem:

Theorem 1. There is an absolute positive constant $C > 0$ such that the following holds. Let Y_1, Y_2, \ldots, Y_n be independent random variables with $\mathbb{E}Y_i = 0$, $\sigma_i^2 := \mathbb{E}Y_i^2 < \infty$. Define $v_n := \sum_{i=1}^{n} \sigma_i^2$ and $\rho_n := \sum_{i=1}^{n} \mathbb{E}|Y_i|^3$. Then

$$\max_{t \in \mathbb{R}} \mathbb{P}\left(\frac{Y_1 + Y_2 + \cdots + Y_n}{\sqrt{v_n}} \leq t\right) - \Phi(t) \leq \frac{C \rho_n}{v_n^{3/2}}.$$