1. Nearest neighbor classification.
Nearest neighbor classification
THE OPTIMAL CLASSIFIER

Let \((X, Y) \sim P\).

The classifier \(f: \mathcal{X} \rightarrow \mathcal{Y}\) with the smallest prediction error

\[
\text{err}(f) = \Pr[f(X) \neq Y]
\]

is the **Bayes classifier**

\[
f^*(x) = \arg \max_{y \in \mathcal{Y}} \Pr[Y = y \mid X = x].
\]
The optimal classifier

Let \((X, Y) \sim P\).

The classifier \(f : \mathcal{X} \rightarrow \mathcal{Y}\) with the smallest prediction error

\[
\text{err}(f) = \Pr[f(X) \neq Y]
\]

is the **Bayes classifier**

\[
f^*(x) = \arg\max_{y \in \mathcal{Y}} \Pr[Y = y \mid X = x].
\]

Of course, we don’t know \(P\), and hence can’t generally get a handle of \(f^*\).
The optimal classifier

Let \((X, Y) \sim P \).

The classifier \(f: \mathcal{X} \rightarrow \mathcal{Y} \) with the smallest prediction error

\[
\text{err}(f) = \Pr[f(X) \neq Y]
\]

is the **Bayes classifier**

\[
f^*(x) = \arg \max_{y \in \mathcal{Y}} \Pr[Y = y \mid X = x].
\]

Of course, we don’t know \(P \), and hence can’t generally get a handle of \(f^* \).

What can we do?

- **Last lecture**: use “generative” models to approximate \(\Pr[Y = y \mid X = x] \).
THE OPTIMAL CLASSIFIER

Let \((X, Y) \sim P\).

The classifier \(f : \mathcal{X} \rightarrow \mathcal{Y}\) with the smallest prediction error

\[
\text{err}(f) = \Pr[f(X) \neq Y]
\]

is the **Bayes classifier**

\[
f^*(x) = \arg \max_{y \in \mathcal{Y}} \Pr[Y = y \mid X = x].
\]

Of course, we don’t know \(P\), and hence can’t generally get a handle of \(f^*\).

What can we do?

- **Last lecture**: use “generative” models to approximate \(\Pr[Y = y \mid X = x]\).
- **This lecture**: directly approximate the decision boundaries of \(f^*\).
Nearest neighbor (NN) classifier

Given training data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\), construct \(\hat{f} : \mathcal{X} \to \mathcal{Y}\) as follows:

On input \(x\),

1. Let \(x_i\) be the point among \(x_1, x_2, \ldots, x_n\) that is closest to \(x\).
2. Return \(y_i\).

Question: how should we measure distance between points in \(\mathcal{X}\)?
Nearest neighbor (NN) classifier

Given training data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\), construct \(\hat{f} : \mathcal{X} \rightarrow \mathcal{Y}\) as follows:

On input \(x\),

1. Let \(x_i\) be the point among \(x_1, x_2, \ldots, x_n\) that is closest to \(x\).
2. Return \(y_i\).

Question: how should we measure distance between points in \(\mathcal{X}\)?
A default choice of distance for data in \mathbb{R}^d:

Euclidean (ℓ_2) distance: $\|u - v\|_2 := \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$.
Distances

A default choice of distance for data in \mathbb{R}^d:

Euclidean (ℓ_2) distance: $\|u - v\|_2 := \sqrt{\sum_{i=1}^{d} (u_i - v_i)^2}$.

But there are many other options (which could be much better than ℓ_2) . . .

- ℓ_p for $p \in [1, \infty]$:

 $$\|u - v\|_p := \left(\sum_{i=1}^{d} |u_i - v_i|^p\right)^{1/p}.$$

- Edit distance (for strings): how add/delete/substitutions are required to transform one string to the other.

- Shape distance (for images): figures out what “shape” is depicted in each image, then computes a distance based on how much “warping” is required to change one to the other.
Example: OCR with NN classifier

- **Handwritten digits data**: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784}, with labels indicating the digit they represent.
Example: OCR with NN classifier

- **Handwritten digits data**: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784}, with labels indicating the digit they represent.

- Split into training data S (60000 points) and test data T (10000 points).
Example: OCR with NN classifier

- **Handwritten digits data**: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784}, with labels indicating the digit they represent.

0 1 2 3 4 5 6 7 8 9

- Split into training data S (60000 points) and test data T (10000 points).
- **Training error**: $\text{err}(\hat{f}, S) = 0$
Example: OCR with NN classifier

- **Handwritten digits data**: grayscale 28×28 images, treated as vectors in \mathbb{R}^{784}, with labels indicating the digit they represent.

 0 1 2 3 4 5 6 7 8 9

- Split into training data S (60000 points) and test data T (10000 points).
- **Training error**: $\text{err}(\hat{f}, S) = 0$

 Test error: $\text{err}(\hat{f}, T) = 0.0309$

- Examples of mistakes (test point in T, nearest neighbor in S):

 28 35 54 41
Example: OCR with NN classifier

- Handwritten digits data: grayscale 28 × 28 images, treated as vectors in \mathbb{R}^{784}, with labels indicating the digit they represent.

- Split into training data S (60000 points) and test data T (10000 points).

- Training error: $\text{err}(\hat{f}, S) = 0$
 Test error: $\text{err}(\hat{f}, T) = 0.0309$

- Examples of mistakes (test point in T, nearest neighbor in S):

 - Observation: First mistake (correct label is '2') might’ve been avoided by looking at three nearest neighbors (whose labels are '8', '2', '2') . . .

 ![test point][three nearest neighbors]
Given training data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\), construct \(\hat{f}_k : \mathcal{X} \rightarrow \mathcal{Y}\) as follows:

On input \(x\),

1. Let \(x_{i_1}, x_{i_2}, \ldots, x_{i_k}\) be the \(k\) points among \(x_1, x_2, \ldots, x_n\) that are closest to \(x\).

2. Return the plurality of \(y_{i_1}, y_{i_2}, \ldots, y_{i_k}\).

(Break ties in both steps arbitrarily.)
Given training data \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n) \in \mathcal{X} \times \mathcal{Y}\), construct \(\hat{f}_k : \mathcal{X} \to \mathcal{Y}\) as follows:

On input \(x\),

1. Let \(x_{i_1}, x_{i_2}, \ldots, x_{i_k}\) be the \(k\) points among \(x_1, x_2, \ldots, x_n\) that are closest to \(x\).
2. Return the plurality of \(y_{i_1}, y_{i_2}, \ldots, y_{i_k}\).

(Break ties in both steps arbitrarily.)

Example: OCR with \(k\)-NN classifier

<table>
<thead>
<tr>
<th>(k)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{err}(\hat{f}_k, T))</td>
<td>0.0309</td>
<td>0.0295</td>
<td>0.0312</td>
<td>0.0306</td>
<td>0.0341</td>
</tr>
</tbody>
</table>
Effect of \(k \)

In general:

- Smaller \(k \) ⇒ smaller training error. \((k = 1 \Rightarrow \text{has zero training error}) \)
- Larger \(k \) ⇒ predictions are more “stable” due to voting.

Purple dotted lines: Bayes classifier’s decision boundaries.
Black solid lines: \(k \)-NN’s decision boundaries.
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** \(\hat{k} := \text{arg min}_k \text{err}(\hat{f}_k, T). \)

\[\text{Caveat: } \hat{f}_{\hat{k}} \text{ is no longer independent of } T \Rightarrow \text{Test error is not an unbiased estimate of true error of } \hat{f}_{\hat{k}}.\]

Better alternatives: For any set of labeled examples $A \subseteq X \times Y$, define $\hat{f}(A, k)$ to be the k-NN classifier that searches for neighbors in A.

1. **Minimizer of hold-out error:** fix $H \subseteq S$, $\hat{k} := \text{arg min}_k \text{err}(\hat{f}(S \setminus H, k), H)$.
2. **Minimizer of leave-one-out cross-validation error:** $\hat{k} := \text{arg min}_k 1/|S| \sum_{(x,y) \in S} \text{err}(\hat{f}(S \setminus \{(x,y)\}, k), \{(x, y)\})$.

\[\Rightarrow \text{Test error is an unbiased estimate of true error of } \hat{f}_{\hat{k}}.\]

More on this later in the course.
Choosing \(k \)

Question: how do we choose \(k \) (say, from some subset of \(\mathbb{N} \) like \(\{1, 3, 5, 7, 9\} \))?

- **Minimizer of test error:** \(\hat{k} := \arg \min_k \text{err}(\hat{f}_k, T) \).

 Caveat: \(\hat{f}_{\hat{k}} \) is no longer independent of \(T \)!

More on this later in the course.
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** $\hat{k} := \arg\min_k \text{err}(\hat{f}_k, T)$.

Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

\implies Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$. More on this later in the course.
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** $\hat{k} := \arg \min_k \text{err}(\hat{f}_k, T)$.

 Caveat: \hat{f}_k is no longer independent of T!

 \implies Test error is not an unbiased estimate of true error of \hat{f}_k.

- **Better alternatives:** For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.

 1. **Minimizer of hold-out error:** fix $H \subseteq S$,

 $\hat{k} := \arg \min_k \text{err}(\hat{f}_{(S\setminus H,k)}, H)$.

Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** $\hat{k} := \arg \min_k \text{err}(\hat{f}_k, T)$.

 Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

 \implies Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.

- **Better alternatives:** For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.

 1. **Minimizer of hold-out error:** fix $H \subseteq S$,

 $\hat{k} := \arg \min_k \text{err}(\hat{f}_{(S\setminus H,k)}, H)$.

 2. **Minimizer of leave-one-out cross-validation error:**

 $\hat{k} := \arg \min_k \frac{1}{|S|} \sum_{(x,y) \in S} \text{err}(\hat{f}_{(S\setminus\{(x,y)\},k)}, \{(x, y)\})$.

More on this later in the course.
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** $\hat{k} := \arg \min_k \text{err}(\hat{f}_k, T)$.

 Caveat: $\hat{f}_{\hat{k}}$ is no longer independent of T!

 \implies Test error is not an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.

- **Better alternatives:** For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}(A, k)$ to be the k-NN classifier that searches for neighbors in A.

 1. **Minimizer of hold-out error:** fix $H \subseteq S$,

 $\hat{k} := \arg \min_k \text{err}(\hat{f}(S \setminus H, k), H)$.

 2. **Minimizer of leave-one-out cross-validation error:**

 $\hat{k} := \arg \min_k \frac{1}{|S|} \sum_{(x, y) \in S} \text{err}(\hat{f}(S \setminus \{(x, y)\}, k), \{(x, y)\})$.

 \implies Test error is an unbiased estimate of true error of $\hat{f}_{\hat{k}}$.

More on this later in the course.
Choosing k

Question: how do we choose k (say, from some subset of \mathbb{N} like $\{1, 3, 5, 7, 9\}$)?

- **Minimizer of test error:** $\hat{k} := \arg \min_k \text{err}(\hat{f}_k, T)$.

Caveat: $\hat{f}_\hat{k}$ is no longer independent of T!

\implies Test error is not an unbiased estimate of true error of $\hat{f}_\hat{k}$.

- **Better alternatives:** For any set of labeled examples $A \subseteq \mathcal{X} \times \mathcal{Y}$, define $\hat{f}_{(A,k)}$ to be the k-NN classifier that searches for neighbors in A.

 1. **Minimizer of hold-out error:** fix $H \subseteq S$,

 $$\hat{k} := \arg \min_k \text{err}(\hat{f}_{(S \setminus H,k)}, H).$$

 2. **Minimizer of leave-one-out cross-validation error:**

 $$\hat{k} := \arg \min_k \frac{1}{|S|} \sum_{(x,y) \in S} \text{err}(\hat{f}_{(S \setminus \{(x,y)\},k)}, \{(x,y)\})).$$

\implies Test error is an unbiased estimate of true error of $\hat{f}_\hat{k}$.

More on this later in the course.
Consistency of k-NN

Say a learning algorithm is consistent if

$$\lim_{n \to \infty} \mathbb{E}[\text{error of learned classifier with training sample size } n] = \text{err}(f^*).$$

1-NN is not consistent unless $\text{err}(f^*) = 0$, although

$$\lim_{n \to \infty} \mathbb{E}[\text{err}(\hat{f}_1)] \leq 2 \cdot \text{err}(f^*) \cdot (1 - \mathcal{K}_2(\mathcal{K} - 1) \cdot \text{err}(f^*)).$$
Say a learning algorithm is **consistent** if

\[
\lim_{n \to \infty} \mathbb{E}\left[\text{error of learned classifier with training sample size } n\right] = \text{err}(f^*).
\]

k-NN is consistent provided that \(k := k_n \) is chosen as an increasing but sublinear function of \(n \):

\[
\lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0
\]

(some other mild conditions might also have to hold).
Consistency of k-NN

Say a learning algorithm is **consistent** if

$$
\lim_{n \to \infty} \mathbb{E}\left[\text{error of learned classifier with training sample size } n\right] = \text{err}(f^*).
$$

k-NN **is consistent** provided that $k := k_n$ is chosen as an increasing but sublinear function of n:

$$
\lim_{n \to \infty} k_n = \infty, \quad \lim_{n \to \infty} \frac{k_n}{n} = 0
$$

(some other mild conditions might also have to hold).

1-NN **is not consistent** unless $\text{err}(f^*) = 0$, although

$$
\lim_{n \to \infty} \mathbb{E}\left[\text{err}(\hat{f}_1)\right] \leq 2 \text{err}(f^*) \cdot \left(1 - \frac{K}{2(K - 1)} \text{err}(f^*)\right).
$$
Naïve implementation of NN classifiers uses n distance computations to compute $\hat{f}_k(x)$ for any test point $x \in \mathcal{X}$.
Naïve implementation of NN classifiers uses \(n \) distance computations to compute \(\hat{f}_k(x) \) for any test point \(x \in \mathcal{X} \).

- If using Euclidean distance in \(\mathbb{R}^d \), then each distance computation is \(O(d) \) operations.

\[\Rightarrow O(dn) \text{ operations per test point.} \]
Naïve implementation of NN classifiers uses n distance computations to compute $\hat{f}_k(x)$ for any test point $x \in \mathcal{X}$.

- If using Euclidean distance in \mathbb{R}^d, then each distance computation is $O(d)$ operations.

$$\implies O(dn) \text{ operations per test point.}$$

Alternatives:

1. Settle for an approximate nearest neighbor using *locality sensitive hash functions*.

2. Store the n training data in a geometric data structure that permits fast NN queries.
Locality sensitive hash functions

(Informally:) A family \(\mathcal{H} \) of hash functions from \(\mathbb{R}^d \) to \(\mathbb{Z} \) is a locality-sensitive hash family if

- For any points \(a, b, c \in X \) with \(\|a - b\|_2 \ll \|a - c\|_2 \),

\[
|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.
\]
Locality Sensitive Hash Functions

(Informally:) A family \(\mathcal{H} \) of hash functions from \(\mathbb{R}^d \) to \(\mathbb{Z} \) is a \textbf{locality-sensitive hash family} if

- For any points \(a, b, c \in X \) with \(\|a - b\|_2 \ll \|a - c\|_2 \),

\[
|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.
\]

It turns out there are such hash families!
A LSH family based on projections to one-dimensional subspaces

For \(\mathbf{w} \in \mathbb{R}^d \) with \(||\mathbf{w}||_2 = 1 \), \(r \in \{2^i : i \in \mathbb{Z}\} \), \(s \in [0, r] \):

\[
h_{\mathbf{w}, r, s}(\mathbf{x}) := \left\lfloor \frac{\mathbf{w}^\top \mathbf{x} + s}{r} \right\rfloor.
\]

- \(\mathbf{w} \) determines the one-dimensional subspace,
- \(r \) determines a distance resolution, and
- \(s \) determines a shift of the bucket boundaries.
Localilty-sensitive hash functions

(Informally:) A family \mathcal{H} of hash functions from \mathbb{R}^d to \mathbb{Z} is a **locality-sensitive hash family** if

- For any points $a, b, c \in \mathbb{R}^d$ with $\|a - b\|_2 \ll \|a - c\|_2$,

 $$|\{h \in \mathcal{H} : h(a) = h(b)\}| \gg |\{h \in \mathcal{H} : h(a) = h(c)\}|.$$

Procedure:

- Select a hash function $h \in \mathcal{H}$ at random.
 (In practice, some parameters of the hash function, like r and s, may be tuned via hold-out or cross-validation.)

- Create pointer from buckets $j \in \mathbb{N}$ to points $x \in S$ such that $h(x) = j$.

- Given test point x, search bucket $h(x)$ for nearest neighbor.
 (The bucket will generally contain far fewer than n points.)
Locality sensitive hash functions

(Informally:) A family \mathcal{H} of hash functions from \mathbb{R}^d to \mathbb{Z} is a **locality-sensitive hash family** if

- For any points $a, b, c \in \mathbb{R}^d$ with $\|a - b\|_2 \ll \|a - c\|_2$,

$$\left|\{h \in \mathcal{H} : h(a) = h(b)\}\right| \gg \left|\{h \in \mathcal{H} : h(a) = h(c)\}\right|.$$

Procedure:

- Select a hash function $h \in \mathcal{H}$ at random.
 (In practice, some parameters of the hash function, like r and s, may be tuned via hold-out or cross-validation.)

- Create pointer from buckets $j \in \mathbb{N}$ to points $x \in S$ such that $h(x) = j$.

- Given test point x, search bucket $h(x)$ for nearest neighbor.
 (The bucket will generally contain far fewer than n points.)

Do this with several hash functions from \mathcal{H} to boost the chances that you find close neighbors.
A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

```
  1
 / \ \\
 2   3
 /   / \ \\
4   5   6
 / \   / \ \\
 x1 x2 x3 x4 x5 x6 x7 x8 x9
```
A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child.
A data structure for fast NN search in \mathbb{R}^1
Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child. **This permits very efficient NN search.**
A data structure for fast NN search in \mathbb{R}^1

Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember **midpoint** between rightmost point in left child, and leftmost point in right child. **This permits very efficient NN search.**

If tree is (approximately) balanced, then $O(\log(n))$ time to find NN!
A data structure for fast NN search in \mathbb{R}^d, $d > 1$
Many options, but a popular one is the K-D tree.
Tree structures for multi-dimensional data

A data structure for fast NN search in \mathbb{R}^d, $d > 1$
Many options, but a popular one is the K-D tree.

Construction procedure
Given points $S \subset \mathbb{R}^d$:

1. Pick a coordinate $j \in \{1, 2, \ldots, d\}$.
2. Let m be the median of $\{x_j : x \in S\}$.
3. Split points into halves:

 $L := \{x \in S : x_j < m\}$,

 $R := \{x \in S : x_j \geq m\}$.

4. Recurse on L and R.
A data structure for fast NN search in \mathbb{R}^d, $d > 1$

Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

1. Pick a coordinate $j \in \{1, 2, \ldots, d\}$.
2. Let m be the median of $\{ x_j : x \in S \}$.
3. Split points into halves:
 \[
 L := \{ x \in S : x_j < m \}, \\
 R := \{ x \in S : x_j \geq m \}.
 \]
4. Recurse on L and R.

Easy to lookup points in S (in $O(\log(n))$ time), but how about NN search?
A data structure for fast NN search in $\mathbb{R}^d, d > 1$

Many options, but a popular one is the K-D tree.

Construction procedure

Given points $S \subset \mathbb{R}^d$:

1. Pick a coordinate $j \in \{1, 2, \ldots, d\}$.
2. Let m be the median of $\{x_j : x \in S\}$.
3. Split points into halves:

 \[
 L := \{x \in S : x_j < m\},
 \]

 \[
 R := \{x \in S : x_j \geq m\}.
 \]
4. Recurse on L and R.

Easy to lookup points in S (in $O(\log(n))$ time), but how about NN search?

Same $O(\log(n))$-time routing of a test point $x \in \mathbb{R}^d$ is overly optimistic: might not yield the NN!
Searching general tree structures

Generic NN search procedure for binary space partition trees

Given a test point \(x \) and a tree node \(v \) (initially \(v = \text{root} \)):

1. Pick most optimistic child \(L \), recursively find NN of \(x \) in \(L \) (call it \(x_L \)).
2. Let \(R \) be the other child. If
 \[
 \| x - x_L \|_2 < \min_{x' \in R} \| x - x' \|_2
 \]
 then return \(x_L \).
3. Otherwise recursively find NN of \(x \) in \(R \) (call it \(x_R \)); return the closer of \(x_L \) and \(x_R \).

\[\text{Note: can't always guarantee } O(\log(n)) \text{ search time due to Step 3.}\]

\[\text{Question: How do you check if } (\star) \text{ is true?} \]

\[\text{\(\rightarrow\text{ Note: it's correct (though computationally wasteful) to declare "false" in Step 2 even if } (\star) \text{ turns out to be true.}\)}\]
Generic NN search procedure for binary space partition trees

Given a test point x and a tree node v (initially $v = \text{root}$):

1. Pick most optimistic child L, recursively find NN of x in L (call it x_L).
2. Let R be the other child. If
 \[\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2 \] \hspace{1cm} (\star)
 then return x_L.
3. Otherwise recursively find NN of x in R (call it x_R);
 return the closer of x_L and x_R.

Note: can’t always guarantee $O(\log(n))$ search time due to Step 3.
Searching general tree structures

Generic NN search procedure for binary space partition trees

Given a test point \(x \) and a tree node \(v \) (initially \(v = \text{root} \)):

1. Pick most optimistic child \(L \), recursively find NN of \(x \) in \(L \) (call it \(x_L \)).
2. Let \(R \) be the other child. If
 \[
 \|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2 \quad \text{(**)}
 \]
 then return \(x_L \).
3. Otherwise recursively find NN of \(x \) in \(R \) (call it \(x_R \));
 return the closer of \(x_L \) and \(x_R \).

Note: can't always guarantee \(O(\log(n)) \) search time due to Step 3.

Question: How do you check if (**\) is true?

- **Note**: it’s correct (though computationally wasteful) to declare “false” in Step 2 even if (**\) turns out to be true.
For K-D trees:
L and R are separated by a hyperplane $H = \{ z \in \mathbb{R}^d : z_j = m \}$.

Suppose test point x is in L, and the NN of x in L is x_L. By geometry,
\[
\min_{x' \in \mathbb{R}} \| x - x' \|_2 \geq \text{distance from } x \text{ to } H = |x_j - m|.
\]

A valid check: if $\| x - x_L \|_2 < |x_j - m|$, then $\| x - x_L \|_2 < \min_{x' \in \mathbb{R}} \| x - x' \|_2$. In this case, we can skip searching R and immediately return x_L.
For K-D trees:
L and R are separated by a hyperplane $H = \{z \in \mathbb{R}^d : z_j = m\}$.

Suppose test point x is in L, and the NN of x in L is x_L.

A valid check: if $\|x - x_L\|_2 < |x_j - m|$, then $\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2$. In this case, we can skip searching R and immediately return x_L.
Using geometric properties

For K-D trees:

L and R are separated by a hyperplane $H = \{z \in \mathbb{R}^d : z_j = m\}$.

Suppose test point x is in L, and the NN of x in L is x_L.

By geometry,

$$\min_{x' \in R} \|x - x'\|_2 \geq \text{distance from } x \text{ to } H$$

$$= |x_j - m|.$$
For K-D trees:
L and R are separated by a hyperplane $H = \{z \in \mathbb{R}^d : z_j = m\}$.

Suppose test point x is in L, and the NN of x in L is x_L.

By geometry,
\[
\min_{x' \in R} \|x - x'\|_2 \geq \text{distance from } x \text{ to } H
\]
\[
= |x_j - m|.
\]

A valid check: if $\|x - x_L\|_2 < |x_j - m|$, then
\[
\|x - x_L\|_2 < \min_{x' \in R} \|x - x'\|_2.
\]

In this case, we can skip searching R and immediately return x_L.
Efficient NN search?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- Very fast in low dimensions.
- But can be slow in high dimensions.
Efficient NN search?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- Very fast in low dimensions.
- But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification. **K-D tree construction doesn’t even look at the labels!**
For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in $O(2^d \log(n))$ time.

- Very fast in low dimensions.
- But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification. **K-D tree construction doesn’t even look at the labels!**

Question: Can we use trees to directly build good classifiers? (Next lecture.)