COMS 4771 Correlation analysis (SVD/PCA)

Singular value decomposition (SVD)

- Perhaps the most important matrix decomposition / factorization
- Many applications in all areas of science, engineering, etc.
 - Solve best fitting subspace problem
 - Principal components analysis (PCA)
 - Interpret/understand linear transformations
 - Construct low-rank matrix approximations
 - Many others in domain-specific contexts
 - Graphics & molecular biology/chemistry: optimal rotation to align point sets
 - Information retrieval: recommender systems
 - Social sciences: discover close-knit communities in networks
 - Statistics/applied math: solve ill-posed linear inverse problems

1. Best fitting subspaces

Example from psychometrics

	International Personality Items	Very Inaccurate -2	Moderately Inaccurate -1	Neither Accurate Nor Inaccurate 0	Moderately Accurate +1	Very Accurate +2
1.	Am the life of the party.	O	0	0	0	O
2.	Feel little concern for others.	O	O	O	O	O
3.	Am always prepared.	O	O	O	O	O
4.	Get stressed out easily.	O	O	O	O	O
5.	Have a rich vocabulary.	O	O	O	O	O
6.	Don't talk a lot.	O	O	O	O	O
7.	Am interested in people.	O	O	O	O	O
8.	Leave my belongings around.	O	O	O	O	O
9.	Am relaxed most of the time	.O	O	O	O	O
10.	Have difficulty understanding abstract ideas.	O	O	O	O	O
11.	Feel comfortable around people.	O	O	O	O	O
12.	Însult people.	O	O	O	O	O
	Pay attention to details.	O	O	O	O	O
14.	Worry about things.	O	O	O	O	O
15.	Have a vivid imagination.	O	O	O	O	O

High-dimensional data from psychometrics

• Response vector for subject *i*:

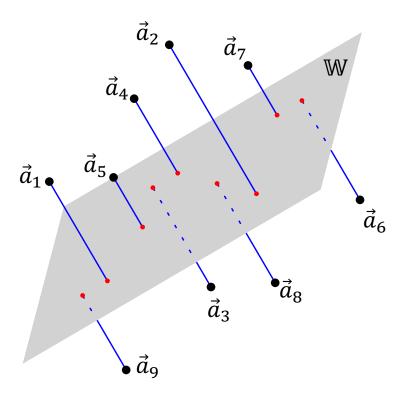
$$\vec{a}_i = (0, -2, +2, -1, 0, +1, -2, -1, -2, +2, 0, -1, +1, ...) \in \mathbb{R}^d$$

One value per "International Personality Item" (d = 3320)

- **Hypothesis**: a few underlying "personality traits" can explain variability in responses of subjects
 - E.g., "Big Five": openness to experience, conscientiousness, extraversion, agreeableness, neuroticism
- Linear algebraic hypothesis: subjects' responses $\vec{a}_1, \dots, \vec{a}_n$ are "close" to a low-dimensional subspace of \mathbb{R}^d

Best fitting subspace problem

- Input: Data $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^d$, target dimension k
- Goal: Find k-dim. subspace W of \mathbb{R}^d that is "closest" to the data



Quality measure

• Distance of \vec{a}_i to subspace W given by

$$\|\vec{a}_i - P_W \vec{a}_i\|$$

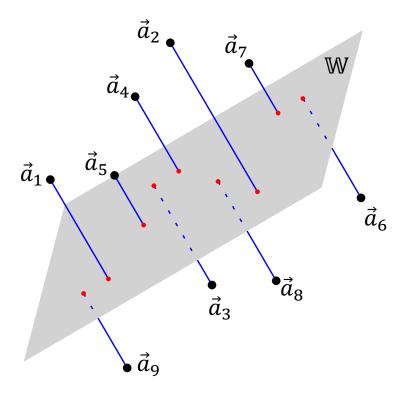
(In this lecture, always use P_W to denote orthoprojector for W)

- ullet There are n "distances" that we want to be small, one per data point
- Our choice of quality measure: sum of squares

$$cost(W) = \|\vec{a}_1 - P_W \vec{a}_1\|^2 + \dots + \|\vec{a}_n - P_W \vec{a}_n\|^2$$

Best fitting subspace problem (again)

- Input: Data $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^d$, target dimension k
- Goal: Find k-dim. subspace W of \mathbb{R}^d of smallest cost(W)



Looking ahead: Solving k-BFS yields the SVD

- There is a simple algorithm for k-dim. Best Fitting Subspace (k-BFS)
 - Greedy algorithm: Repeatedly solve a Best Fitting Line problem
- Solving k-BFS for all k provides a decomposition of data matrix

$$A = \begin{bmatrix} \leftarrow & \vec{a}_1^\top & \rightarrow \\ & \vdots & \\ \leftarrow & \vec{a}_n^\top & \rightarrow \end{bmatrix} = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \dots + \sigma_r \vec{u}_r \vec{v}_r^\top$$

$$\leftarrow \vec{a}_n^\top & \rightarrow \end{bmatrix} = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \dots + \sigma_r \vec{u}_r \vec{v}_r^\top$$
Singular Value Decomposition (SVD) of A

where

- r is rank of A
- $(\vec{u}_1, ..., \vec{u}_r)$ is ONB for CS(A)• $(\vec{v}_1, ..., \vec{v}_r)$ is ONB for CS (A^T)
- $\sigma_1, \ldots, \sigma_r > 0$

(called left singular vectors of A) (called right singular vectors of A)

(called singular values of A)

Reformulating cost

• Pythagorean identity: For any subspace W and vector \vec{v}

$$\|\vec{v}\|^2 = \|P_W\vec{v}\|^2 + \|\vec{v} - P_W\vec{v}\|^2$$

• Therefore:

Reformulating gain

• Identify k-dim. subspace W with Orthonormal Basis (ONB) $(\vec{q}_1, ..., \vec{q}_k)$ for W:

$$gain(\vec{q}_{1}, ..., \vec{q}_{k}) = \sum_{i=1}^{n} ||P_{W}\vec{a}_{i}||^{2} = \sum_{i=1}^{n} \sum_{j=1}^{k} \langle \vec{a}_{i}, \vec{q}_{j} \rangle^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} \langle \vec{a}_{i}, \vec{q}_{j} \rangle^{2}$$

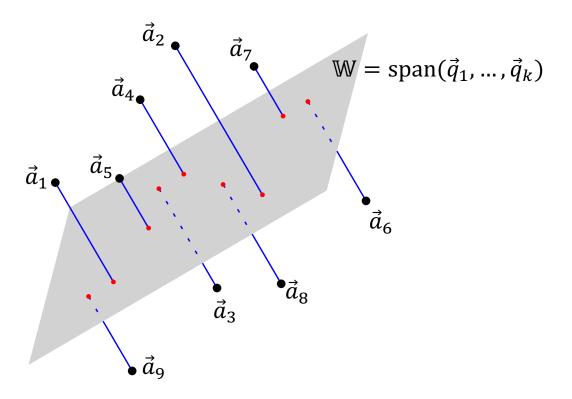
$$gain(\vec{q}_{1}, ..., \vec{q}_{k}) = \sum_{i=1}^{n} ||P_{W}\vec{a}_{i}||^{2} = \sum_{i=1}^{n} \sum_{j=1}^{k} \langle \vec{a}_{i}, \vec{q}_{j} \rangle^{2}$$

$$gain(\vec{q}_{1})$$

(by Parseval's identity)

Best fitting subspace problem (yet again)

- Input: Data \vec{a}_1 , ..., $\vec{a}_n \in \mathbb{R}^d$, target dimension k
- Goal: Find ONB $(\vec{q}_1, ..., \vec{q}_k)$ of highest gain $(\vec{q}_1) + \cdots + \text{gain}(\vec{q}_k)$



Greedy algorithm for k-BFS

- Input: Data \vec{a}_1 , ..., $\vec{a}_n \in \mathbb{R}^d$, target dimension k
- For j = 1, 2, ..., k do
 - $S_{j-1} = \text{span}(\{\vec{v}_1, ..., \vec{v}_{j-1}\})$
 - Let \vec{v}_j be unit vector $\vec{x} \in S_{j-1}^{\perp}$ of highest gain (\vec{x}) (\bigstar)
- Return ONB $(\vec{v}_1, ..., \vec{v}_k)$ for $S_k = \operatorname{span}(\{\vec{v}_1, ..., \vec{v}_k\})$

Sample run of 2-BFS greedy algorithm

• Data (n=4 data points in \mathbb{R}^d for d=4)

$$A = \begin{bmatrix} \leftarrow & \vec{a}_1^\mathsf{T} & \rightarrow \\ \leftarrow & \vec{a}_2^\mathsf{T} & \rightarrow \\ \leftarrow & \vec{a}_3^\mathsf{T} & \rightarrow \\ \leftarrow & \vec{a}_4^\mathsf{T} & \rightarrow \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & 0 \\ -1 & -3 & 0 & -2 \\ 0 & 2 & 1 & 3 \\ -2 & 0 & -3 & -1 \end{bmatrix}$$

• Step j = 1

$$\begin{bmatrix} \leftarrow \vec{a}_{4}^{\mathsf{T}} & \rightarrow \end{bmatrix} \begin{bmatrix} -2 & 0 & -3 & -1 \end{bmatrix}$$

$$S_{0} = \{\vec{0}\}, \qquad S_{0}^{\perp} = \mathbb{R}^{4}, \qquad \vec{v}_{1} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$

achieves gain
$$(\vec{v}_1) = 3^2 + (-3)^2 + 3^2 + (-3)^2 = 36$$

Sample run of 2-BFS greedy algorithm (2)

• Data (n=4 data points in \mathbb{R}^d for d=4)

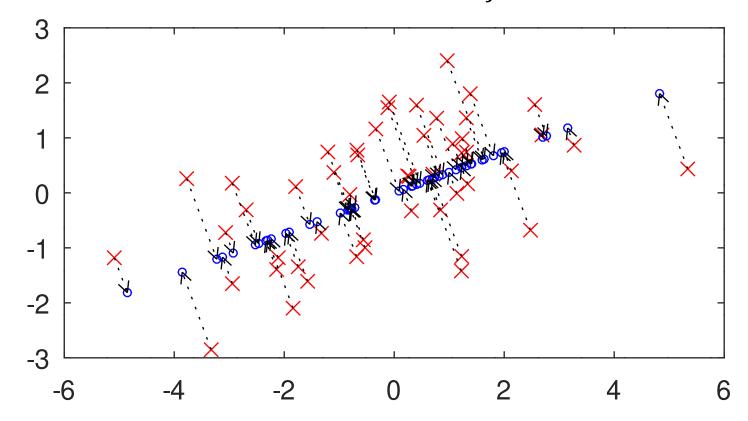
$$A = \begin{bmatrix} \leftarrow & \vec{a}_1^{\mathsf{T}} & \rightarrow \\ \leftarrow & \vec{a}_2^{\mathsf{T}} & \rightarrow \\ \leftarrow & \vec{a}_3^{\mathsf{T}} & \rightarrow \\ \leftarrow & \vec{a}_4^{\mathsf{T}} & \rightarrow \end{bmatrix} = \begin{bmatrix} 3 & 1 & 2 & 0 \\ -1 & -3 & 0 & -2 \\ 0 & 2 & 1 & 3 \\ -2 & 0 & -3 & -1 \end{bmatrix}$$

• Step j = 2 $S_1 = \text{span}(\vec{v}_1), \qquad S_1^{\perp} = \text{NS}(\vec{v}_1^{\top}), \qquad \vec{v}_2 = \left(\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}\right)$

achieves gain
$$(\vec{v}_2) = 2^2 + 2^2 + (-2)^2 + (-2)^2 = 16$$

Best fitting line (★)

• Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem restricted to orthogonal complement of $S_{j-1} = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_{j-1})$



Optimality of k-BFS greedy algorithm

Theorem: Consider any dataset \vec{a}_1 , ..., \vec{a}_n and any k

1. k-BFS greedy algorithm finds k-dim. subspace S_k such that

$$gain(S_k) \ge gain(W)$$

for all k-dim. subspaces W

2. Non-negative values $\sigma_j = \sqrt{\mathrm{gain}(\vec{v}_j)}$ satisfy

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k$$

More properties of k-BFS greedy algorithm

Theorem: Let A be $n \times d$ matrix with rows \vec{a}_1^{T} , ..., \vec{a}_n^{T} ; let $r = \mathrm{rank}(A)$

1.
$$S_r = \text{span}(\{\vec{a}_1, ..., \vec{a}_n\}) = \text{CS}(A^T)$$

- 2. $\sigma_j = ||A\vec{v}_j|| > 0$ for all $j \in \{1, ..., r\}$
- 3. $cost(S_k) = \sigma_{k+1}^2 + \dots + \sigma_r^2$
- 4. If $\vec{u}_j = \frac{1}{\sigma_j} A \vec{v}_j$ for $j \in \{1, ..., r\}$, then

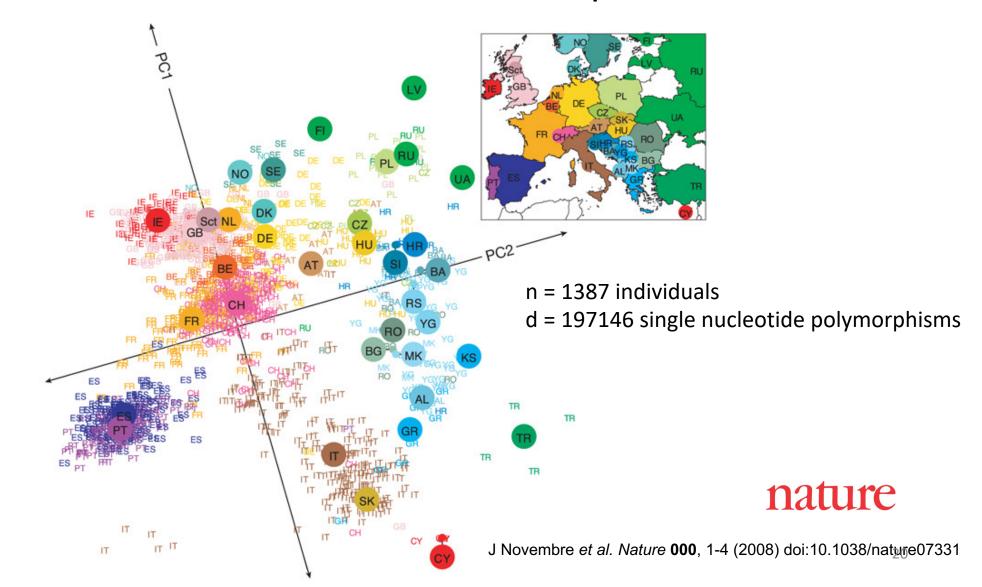
$$A = \sigma_1 \vec{u}_1 \vec{v}_1^{\mathsf{T}} + \dots + \sigma_r \vec{u}_r \vec{v}_r^{\mathsf{T}}$$

and \vec{u}_1 , ..., \vec{u}_r are orthonormal

MNIST

original	k = 25	k = 50	k = 75	k = 100
7	7	7	7	7
3	3	3	3	3
8	8	8	8	8

Population structure within Europe



2. Singular value decomposition

SVD existence theorem

SVD theorem: For any $n \times d$ matrix A of rank r, there exist

- ONB $(\vec{u}_1, ..., \vec{u}_r)$ for CS(A) (called left singular vectors of A),
- ONB $(\vec{v}_1, ..., \vec{v}_r)$ for $CS(A^T)$ (called right singular vectors of A),
- positive numbers $\sigma_1 \ge \cdots \ge \sigma_r > 0$ (called singular values of A)

such that

$$A = \sigma_1 \vec{u}_1 \vec{v}_1^{\mathsf{T}} + \dots + \sigma_r \vec{u}_r \vec{v}_r^{\mathsf{T}}$$

This decomposition is called a singular value decomposition (SVD) of A

Proof: By construction, using k-BFS greedy algorithm

SVD as matrix factorization

• Compact SVD: Given SVD $A = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \dots + \sigma_r \vec{u}_r \vec{v}_r^\top$, can write $A = U \Sigma V^\top$

where

$$U = \begin{bmatrix} \uparrow & & \uparrow \\ \vec{u}_1 & \cdots & \vec{u}_r \\ \downarrow & & \downarrow \end{bmatrix}$$
, $\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$, $V = \begin{bmatrix} \uparrow & & \uparrow \\ \vec{v}_1 & \cdots & \vec{v}_r \\ \downarrow & & \downarrow \end{bmatrix}$

- Notice that $U^{\top}U=I_n$, $V^{\top}V=I_d$, and Σ is invertible $r\times r$ diagonal matrix
- See reading for description of "Full SVD" variant
- Compact SVD of transpose is $A^{\top} = V \Sigma U^{\top}$

SVD in NumPy

numpy.linalg.svd

- External call to _gesdd from LAPACK ("Linear Algebra Package")
- Pay attention to the options (e.g., full_matrices)
- Time complexity: $O(nd \min\{n, d\})$

3. Covariance matrices and PCA

Multivariate data

• Data points $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^d$, e.g.,

$$\vec{a}_i = (0, -2, +2, -1, 0, +1, -2, -1, -2, +2, 0, -1, +1, ...) \in \mathbb{R}^d$$

- Each \vec{a}_i contains d measurements (a.k.a. "variables" or "feature" values)
- It is typical to center the data: subtract the mean vector

$$\vec{\mu} = \frac{1}{n} \sum_{i=1}^{n} \vec{a}_i$$

from each data point \vec{a}_i

Covariance matrix

• If data points $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^d$ are already centered, then their (empirical) covariance matrix is the $n \times d$ matrix

$$C = \frac{1}{n} \sum_{i=1}^{n} \vec{a}_i \vec{a}_i^{\mathsf{T}}$$

- The $(i,j)^{\text{th}}$ component of C is the (empirical) covariance between the i^{th} "feature" and the j^{th} "feature"
 - $C_{i,i}$ is the variance of the i^{th} "feature"
- If data points are stacked as rows in $n \times d$ matrix A, then $C = \frac{1}{n}A^{T}A$

Principal components analysis

 Principal components analysis (PCA): linearly transform (centered) data $\vec{a}_1, \dots, \vec{a}_n \in \mathbb{R}^d$ by an $d \times r$ matrix Q

$$\vec{b}_i = Q^{\mathsf{T}} \vec{a}_i$$

 $\vec{b}_i = Q^\top \vec{a}_i$ so that "features" in new data set \vec{b}_1 , ..., \vec{b}_n are

- Uncorrelated (zero covariance between different features)
- Ordered so that variance is non-increasing (e.g., feature 1 has highest variance, feature 2 has next highest variance, ...)
- Desired matrix Q is given by **right singular vectors** of A, with order given by corresponding singular values of A (from largest to smallest)
 - Variances are the squares of the singular values of A (divided by n)

Eigenvectors and eigenvalues

PCA usually defined by eigenvectors of covariance matrix $C = \frac{1}{n}A^{\top}A$ If SVD factorization of A is $A = U\Sigma V^{\top}$, then matrix V diagonalizes C: $V^{\top}CV = \frac{1}{n}\Sigma^{2}$

- Eigenvectors of C are right singular vectors of A
- Eigenvalues of C are squared singular values of A (divided by n)
- j^{th} largest eigenvalue of C is variance of the data set in direction \vec{v}_j

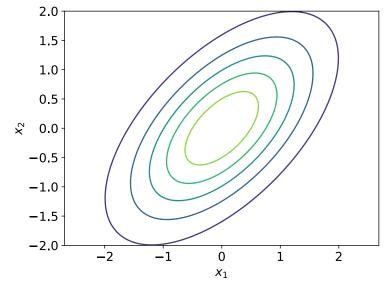
Bivariate normal distribution

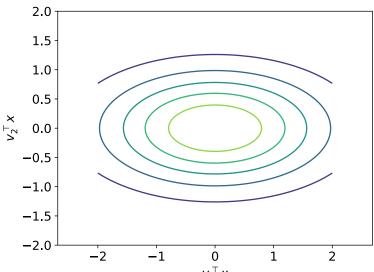
• Example: (infinitely many) data from bivariate normal distribution

$$N\left(0, \begin{bmatrix} 10/9 & 2/3 \\ 2/3 & 10/9 \end{bmatrix}\right)$$

• (Population) covariance matrix has eigenvalues/eigenvectors

$$\lambda_1 = \frac{16}{9}, \qquad \vec{v}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\lambda_2 = \frac{4}{9}, \qquad \vec{v}_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$





MNIST

- Example: MNIST (just the 8's), n = 6000, d = 784
 - 10 images sorted by $\vec{x}^{\mathsf{T}} \vec{v}_1$

Dimension reduction with PCA

- **PCA transformation**: Linear map V^{\top} : $\mathbb{R}^d \to \mathbb{R}^r$, where $V \in \mathbb{R}^{d \times r}$ is matrix of right singular vectors of centered data matrix $A \in \mathbb{R}^{n \times d}$ (ordered by corresponding singular values, from largest to smallest)
- To reduce to dimension k, just keep first k entries of each transformed vector

$$\vec{b} = (b_1, ..., b_k, b_{k+1}, ..., b_r) = V^{\mathsf{T}} \vec{a}$$

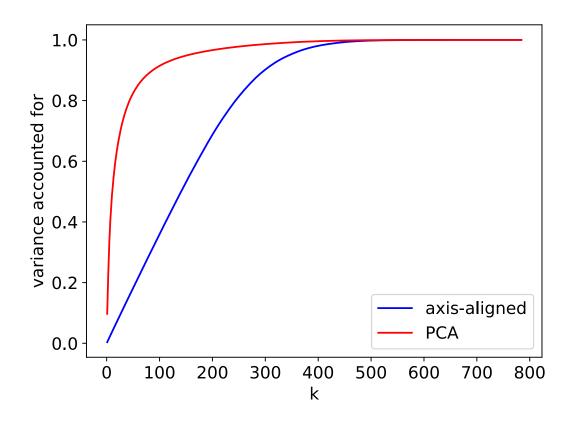
Same as using only first k right singular vectors in V

Dimension reduction of MNIST

Variance Accounted For:

$$VAF = \frac{\sum_{i=1}^{k} \widehat{var}(b_i)}{\sum_{i=1}^{d} \widehat{var}(a_i)}$$

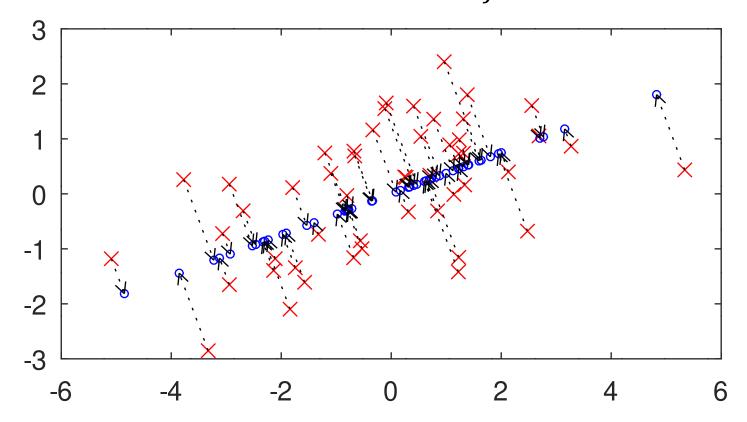
- Axis-aligned: $\vec{b} = \vec{a}$, ordered by $var(b_i)$ (largest to smallest)
- PCA: $\vec{b} = V^{\mathsf{T}} \vec{a}$



4. Power method

Best fitting line (★)

• Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem restricted to orthogonal complement of $S_{j-1} = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_{j-1})$

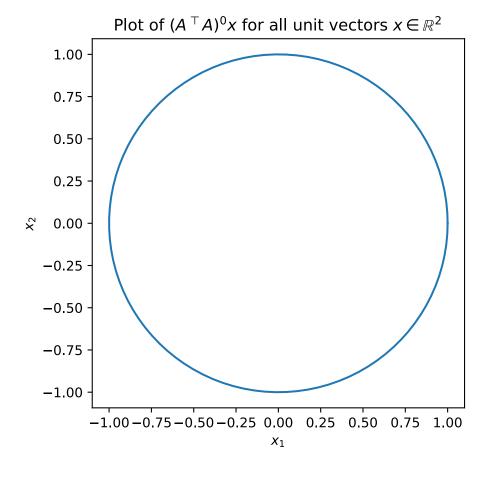


Powers of a positive semidefinite matrix

- If SVD factorization of A is $A = U\Sigma V^{\top}$, then V diagonalizes $A^{\top}A$: $V^{\top}(A^{\top}A)V = \Sigma^2$
- V also diagonalizes $(A^{T}A)^{2}$: $V^{T}(A^{T}A)^{2}V = \Sigma^{4}$
- V also diagonalizes $(A^{T}A)^{3}$: $V^{T}(A^{T}A)^{3}V = \Sigma^{6}$
- •
- So, for any t: $(A^{\mathsf{T}}A)^t = \sigma_1^{2t} \vec{v}_1 \vec{v}_1^{\mathsf{T}} + \sigma_2^{2t} \vec{v}_2 \vec{v}_2^{\mathsf{T}} + \dots + \sigma_r^{2t} \vec{v}_r \vec{v}_r^{\mathsf{T}}$

Powers of $A^{T}A$

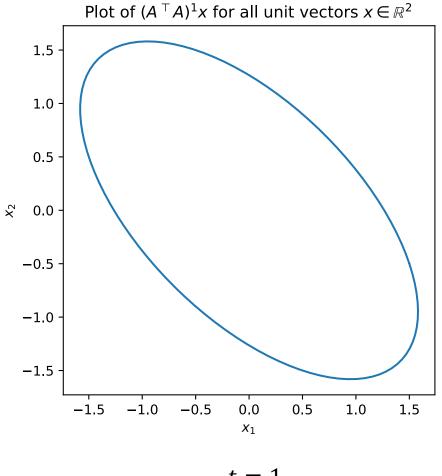
$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1 \end{bmatrix}$$



$$t = 0$$

Powers of $A^{T}A$

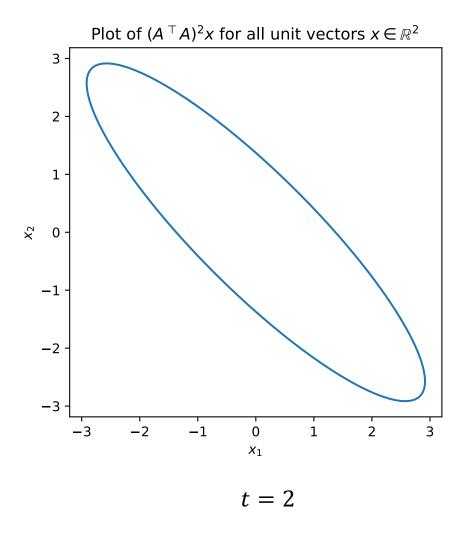
$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1 \end{bmatrix}$$



$$t = 1$$

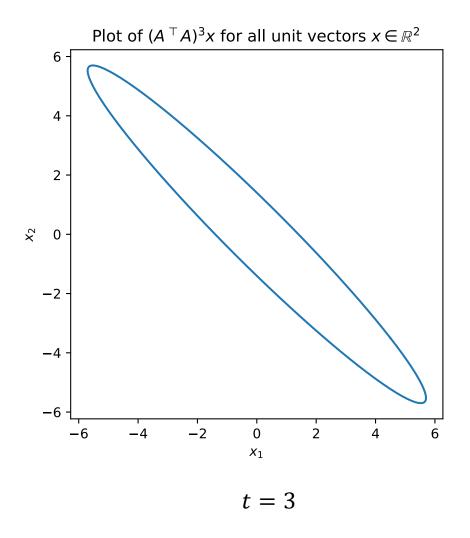
Powers of $A^{\mathsf{T}}A$

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1 \end{bmatrix}$$



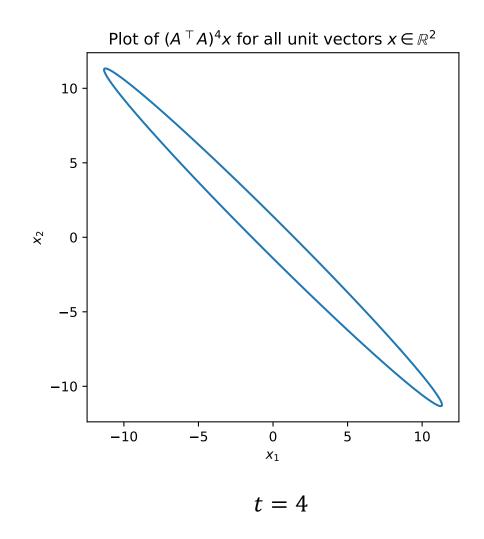
Powers of $A^{T}A$

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1 \end{bmatrix}$$



Powers of $A^{T}A$

$$A = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1 & -1 \end{bmatrix}$$



Multiplying powers of A^TA by a vector

• For any *t*:

$$(A^{\mathsf{T}}A)^t = \sigma_1^{2t} \left(\left(\frac{\sigma_1}{\sigma_1} \right)^{2t} \vec{v}_1 \vec{v}_1^{\mathsf{T}} + \left(\frac{\sigma_2}{\sigma_1} \right)^{2t} \vec{v}_2 \vec{v}_2^{\mathsf{T}} + \dots + \left(\frac{\sigma_r}{\sigma_1} \right)^{2t} \vec{v}_r \vec{v}_r^{\mathsf{T}} \right)$$

• If $\sigma_1 > \sigma_2$, then for any $\vec{x} \in \mathbb{R}^d$ s.t. $\vec{x} \cdot \vec{v}_1 \neq 0$ and large enough t,

$$(A^{\mathsf{T}}A)^t\vec{x} \approx (\vec{x}\cdot\vec{v}_1)\sigma_1^{2t}\vec{v}_1$$

- If $\sigma_1=\dots=\sigma_p>\sigma_{p+1}$, and \vec{x} not orthogonal to $\mathrm{span}\{\vec{v}_1,\dots,\vec{v}_p\}$, then get vector (approximately) in span of $\vec{v}_1,\dots,\vec{v}_p$ (all such vectors are equally good!)
- Also: can compute $(A^TA)^t\vec{x}$ iteratively

Power method

- Input: $n \times d$ matrix A
- Randomly pick a d-dimensional unit vector \vec{x}
- For j = 1, 2, ..., t do

•
$$\vec{x} = \frac{1}{\|(A^{\mathsf{T}}A)\vec{x}\|} (A^{\mathsf{T}}A)\vec{x}$$

• Return \vec{x}

Use in k-BFS greedy algorithm

- Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem restricted to orthogonal complement of $S_{j-1} = \operatorname{span}(\vec{v}_1, \dots, \vec{v}_{j-1})$
- Q: How to ensure we restrict to S_{j-1}^{\perp} ?
- A: Run power method on data $P_W \vec{a}_1, \dots, P_W \vec{a}_n$ for $W = S_{j-1}^{\perp}$
 - Then every $\vec{v} \in S_{j-1}$ has $\langle \vec{v}, P_W \vec{a}_i \rangle = 0$ for all i

Use in implementations

- LAPACK implementation of SVD does not use power method
- However, main idea of power method is used in "big data" settings when, e.g., cannot even load A into memory

5. Low-rank approximations

Low-rank matrix approximation

• **Problem**: Given $n \times d$ matrix A and non-negative integer k, find a $n \times d$ matrix B of rank k so that

$$\sum_{i=1}^{n} \sum_{j=1}^{d} (A_{i,j} - B_{i,j})^{2}$$

is as small as possible.

- Motivation: Rank k matrix can be represented using (n+d)k numbers (whereas a $n \times d$ matrix requires nd numbers)
 - Space savings if k < nd/(n+d)

Truncated SVD

• Rank-k truncated SVD of $n \times d$ matrix A of rank r (for $k \leq r$):

$$\hat{A} = \sigma_1 \vec{u}_1 \vec{v}_1^\mathsf{T} + \dots + \sigma_k \vec{u}_k \vec{v}_k^\mathsf{T}$$

- Drop the r-k terms in SVD corresponding to r-k smallest singular values
- Matrix \hat{A} also called the rank-k SVD approximation of A

Eckart-Young Theorem

• Eckart-Young Theorem: For any $n \times d$ matrix A of rank r, any $k \leq r$, and any $n \times d$ matrix B of rank k,

Reconstruction error of \hat{A}

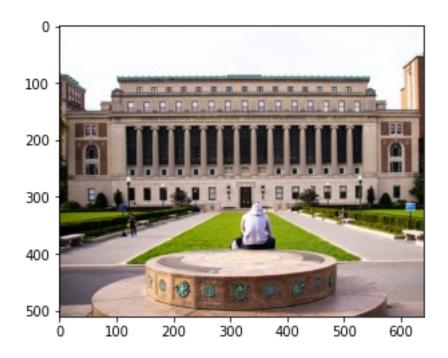
$$\sum_{i=1}^{n} \sum_{j=1}^{d} (A_{i,j} - B_{i,j})^{2} \ge \sum_{i=1}^{n} \sum_{j=1}^{d} (A_{i,j} - \hat{A}_{i,j})^{2} = \sigma_{k+1}^{2} + \dots + \sigma_{r}^{2}$$

where \hat{A} is rank-k SVD approximation of A, and $\sigma_1 \geq \cdots \geq \sigma_r$ are the singular values of A

• This is a corollary of the k-BFS greedy algorithm's guarantees

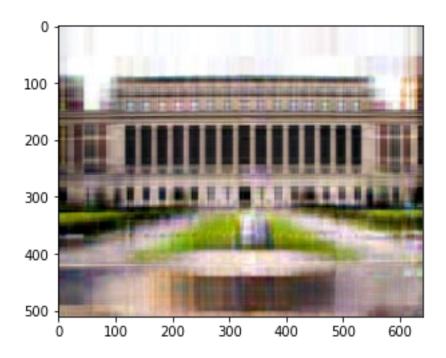
Example: image compression

510x640 pixel image: 3 separate 510×640 matrices, one per RGB color



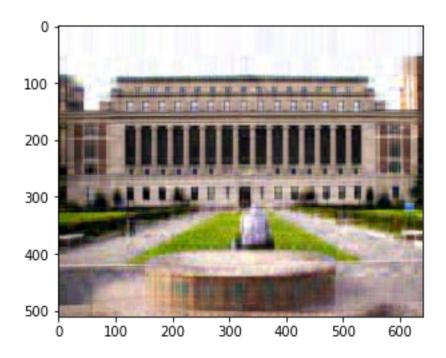
Rank 8 SVD approximations

Replace each matrix by rank 8 SVD approximation



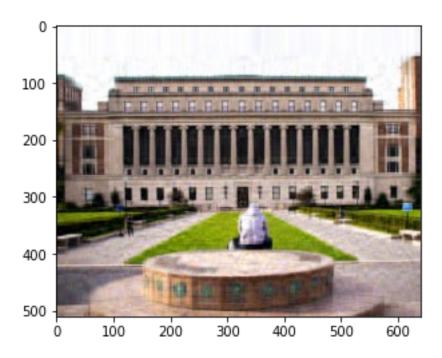
Rank 16 SVD approximations

Replace each matrix by rank 16 SVD approximation



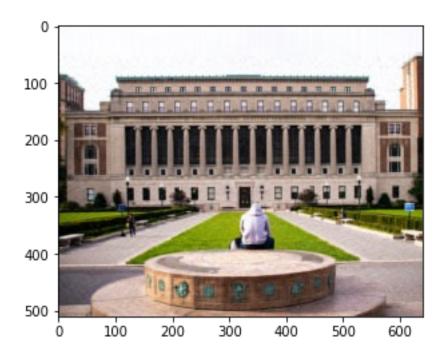
Rank 32 SVD approximations

• Replace each matrix by rank 32 SVD approximation



Rank 64 SVD approximations

Replace each matrix by rank 64 SVD approximation



Statistical application

• Consider the following statistical model: A is $n \times d$ matrix of independent random variables, where

$$A_{i,j} \sim N(H_{i,j}, \sigma^2)$$

- Here, H is a $n \times d$ matrix of rank k, regarded as the model parameter
- Maximum likelihood estimator for H: rank-k SVD approx. of A
- Intuitive interpretation: truncated SVD attempts to remove the noise

6. Moore-Penrose pseudoinverse

Interpretation provided by SVD

• SVD factorization of A:

$$A = U\Sigma V^{\mathsf{T}}$$

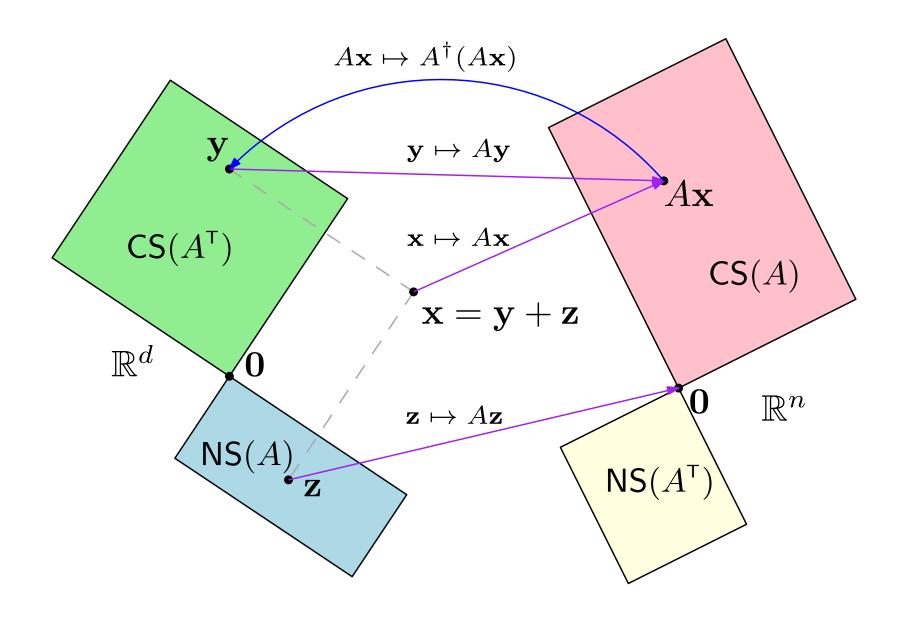
- Interpretation: for $\vec{x} \in CS(A^T)$,
 - $\vec{\alpha} = V^{\mathsf{T}} \vec{x}$: coordinates of \vec{x} in V-basis
 - $\vec{\beta} = \Sigma \vec{\alpha}$: Scale each coordinate according to diagonal entries of Σ
 - Interpret $\vec{\beta}$ as coordinates in U-basis, and return vector $U\vec{\beta}$

Moore-Penrose pseudoinverse

• For $A = \sigma_1 \vec{u}_1 \vec{v}_1^\top + \dots + \sigma_r \vec{u}_r \vec{v}_r^\top$, Moore-Penrose pseudoinverse is

$$A^{\dagger} = V \Sigma^{-1} U^{\mathsf{T}}$$

- Interpretation: for $\vec{x} \in CS(A)$,
 - $\vec{\beta} = U^{\mathsf{T}} \vec{x}$: coordinates of \vec{x} in U-basis
 - $\vec{\alpha} = \Sigma^{-1} \vec{\beta}$: Scale each coordinate according to diagonal entries of Σ^{-1}
 - Interpret $\vec{\alpha}$ as coordinates in V-basis, and return vector $V\vec{\alpha}$
- Useful fact #1: Fundamental subspaces of A^{\dagger} are same as that of A^{\top}
- <u>Useful fact #2</u>: When restricting attention to $CS(A^T)$ and CS(A), the linear maps A and A^{\dagger} are inverses of each other (in the usual sense)



Relation to orthogonal projections

• Useful fact #3:

$$AA^{\dagger} = U\Sigma V^{\mathsf{T}}V\Sigma^{-1}U^{\mathsf{T}} = UU^{\mathsf{T}} = P_{\mathsf{CS}(A)}$$

- Write $\vec{b} \in \mathbb{R}^n$ as $\vec{b} = \vec{b}_{\parallel} + \vec{b}_{\perp}$ for $\vec{b}_{\parallel} \in \mathrm{CS}(A)$ and $\vec{b}_{\perp} \in \mathrm{NS}(A^{\top})$
- Recall $NS(A^{T}) = NS(A^{\dagger})$
- Then $A^\dagger \vec{b} = A^\dagger \left(\vec{b}_{||} + \vec{b}_{\perp} \right) = A^\dagger \vec{b}_{||}$
- So $A^{\dagger}\vec{b}$ is unique $\vec{y} \in \mathrm{CS}(A^{\top})$ such that $A\vec{y} = \vec{b}_{\parallel}$
- Conclusion: $AA^{\dagger}\vec{b} = \vec{b}_{\parallel}$

Application: solving normal equations

Normal equations:

$$A^{\mathsf{T}}A\overrightarrow{w} = A^{\mathsf{T}}\overrightarrow{b}$$

• Solution in row space of *A*:

$$\vec{w}^* = A^{\dagger} \vec{b}$$

• Why is \overrightarrow{w}^* a solution?

$$A\vec{w}^* = AA^{\dagger}\vec{b} = P_{CS(A)}\vec{b}$$

- Fact: If $\vec{w} \neq \vec{w}^*$ also solves the normal equations, then $||\vec{w}|| > ||\vec{w}^*||$
 - Can always make \vec{w} shorter by removing the part of \vec{w} in NS(A)
 - There is only one solution to $A\vec{w} = P_{\text{CS}(A)}\vec{b}$ in $\text{CS}(A^{\mathsf{T}})$

7. Latent semantic analysis

Document-term matrix

- *n* documents in a corpus
- *d* words in vocabulary
- Create $n \times d$ matrix A of word counts per document

	aardvark	abacus	abalone	
Document 1	3	0	0	•••
Document 2	7	0	4	•••
Document 3	2	4	0	•••
:	:	:	:	: .

Latent semantic analysis (LSA)

Rank-k truncated SVD of A:

$$\hat{A} = \hat{U}\hat{\Sigma}\hat{V}^{\mathsf{T}}$$

where

$$\widehat{U} = \begin{bmatrix} \uparrow & & \uparrow \\ \overrightarrow{u}_1 & \cdots & \overrightarrow{u}_k \end{bmatrix}, \qquad \widehat{\Sigma} = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_k \end{bmatrix}, \qquad \widehat{V} = \begin{bmatrix} \uparrow & & \uparrow \\ \overrightarrow{v}_1 & \cdots & \overrightarrow{v}_k \end{bmatrix}$$

- Use i^{th} row of $\widehat{U} \in \mathbb{R}^{n \times k}$ as representation of i^{th} document
- Use j^{th} column of $\hat{\Sigma}\hat{V}^{\top} \in \mathbb{R}^{k \times d}$ as representation of j^{th} vocabulary word

Topic modeling with LSA

- Each row of A is approximated by a linear combination of the k rows of $\hat{\Sigma}\hat{V}^{\top} \in \mathbb{R}^{k \times d}$
 - Interpret each row of $\widehat{\Sigma}\widehat{V}^{\mathsf{T}}$ as a representation of a "topic"
 - i^{th} row of \widehat{U} : "weights" that i^{th} document puts each of the k topics
- Alternatives to LSA (e.g., "Latent Dirichlet Allocation"):
 - Also give low-rank approximations to A
 - But also have probabilistic interpretations

Word embeddings

- Word embeddings: vector representations of vocabulary words
- Default ("one-hot") word embeddings:
 - i^{th} vocabulary word: $\vec{e}_i = (0, ..., 0, 1, ..., 0)$
 - Geometry: all words are orthogonal to each other
- Word embeddings from LSA:
 - Geometry: reflects co-occurrence statistics in documents
 - Hope that truncated SVD removes corpus-specific "noise"
- Using word embeddings in machine learning:
 - Get word embeddings (by LSA or other means) from a large corpus of documents (not just the training data for "downstream" application)
 - Represent words using the embeddings in data for downstream application