COMS 4771
Correlation analysis (SVD/PCA)



Singular value decomposition (SVD)

* Perhaps the most important matrix decomposition / factorization

* Many applications in all areas of science, engineering, etc.
* Solve best fitting subspace problem

Principal components analysis (PCA)

Interpret/understand linear transformations

Construct low-rank matrix approximations

Many others in domain-specific contexts
* Graphics & molecular biology/chemistry: optimal rotation to align point sets

* Information retrieval: recommender systems
* Social sciences: discover close-knit communities in networks
* Statistics/applied math: solve ill-posed linear inverse problems



1. Best fitting subspaces



Example from psychometrics

Neither
Accurate
] Very Moderately Nor Moderately Very
International Inaccurate Inaccurate Inaccurate Accurate  Accurate

Personality Items -2 -1 0 +1 +2

Am the life of the party.
Feel little concern for others.
Am always prepared.
Get stressed out easily.
Have a rich vocabulary.
Don't talk a lot.
Am interested in people.
Leave my belongings
around.
Am relaxed most of the time.
Have difficulty

" understanding abstract ideas.

11 Feel comfortable around

" people.

12. Insult people.

13. Pay attention to details.

14. Worry about things.

15. Have a vivid imagination.
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High-dimensional data from psychometrics

* Response vector for subject i:
a; =(0,-2,+2,-1,0,+1,—-2,—-1,—2,+2,0,—1,+1,...) € R?

One value per "International Personality Item" (d = 3320)

* Hypothesis: a underlying "personality traits" can explain
variability in responses of subjects
e E.g., "Big Five": openness to experience, conscientiousness, extraversion,
agreeableness, neuroticism

. . . . . " - - n n
* Linear algebraic hypothesis: subjects’ responses a4, ..., a, are "close
toa -dimensional subspace of R¢



Best fitting subspace problem

* Input: Data d,, ..., d,, € R%, target dimension k
* Goal: Find k-dim. subspace W of R? that is "closest" to the data



Quality measure

* Distance of a; to subspace W given by
la; — Py all

(In this lecture, always use Py, to denote orthoprojector for W)
* There are n "distances" that we want to be small, one per data point
* Our choice of quality measure: sum of squares

cost(W) = ||d; — Pydq||> + -+ ||d,, — Py d,||?



Best fitting subspace problem (again)

* Input: Data d,, ..., d,, € R%, target dimension k
» Goal: Find k-dim. subspace W of R% of smallest cost(IW)



Looking ahead: Solving k-BFS vyields the SVD

1. There is a simple algorithm for k-dim. Best Fitting Subspace (k-BFS)
* Greedy algorithm: Repeatedly solve a Best Fitting Line problem

2. Solving k-BFS for all k provides a decomposition of data matrix
’ T .
A= : = 01Uy V) + -+ o, V)
C_i; |  Singular Value Decomposition (SVD) of A

where

* risrank of A

* (Uq,..,U,)is ONB for CS(A) (called left singular vectors of A)
e (¥q,...,V,) is ONB for CS(A") (called right singular vectors of A)
* 01,...,0, >0 (called singular values of A)



Reformulating cost

 Pythagorean identity: For any subspace W and vector v

111> = 1Py 1I* + IV — Py oI

 Therefore:

cost(W) = lldyll* + -+ + lldnlI* = UlPwarll* + - + | Pwdn 1)

gain(W)



Reformulating gain

* [dentify k-dim. subspace W with Orthonormal Basis (ONB)
(g4, ..., qy) for W:

n k k n

n
ain(@s, 000 = ) WPl = ) Y (@ @)’ = . Y (@ d)
i=1 =1

=1 j=1 ]=1

g

galn(qj)

(by Parseval's identity)



Best fitting subspace problem (yet again)

* Input: Data d,, ..., d,, € R%, target dimension k
* Goal: Find ONB (g4, ..., g ) of highest gain(g,) + --- + gain(qy,)

a,

- \ W = Span((jlr ey C_ik)



Greedy algorithm for k-BFS

* Input: Data d,, ..., d,, € R%, target dimension k
*Forj=1,2,..,kdo

° i—1 = Span({ﬁl) .--,7})]'—1})

* Let U; be unit vector X € Sjl_l of highest gain(x) (%)

* Return ONB (¥4, ..., Uy ) for S, = span({vy, ..., U })



Sample run of 2-BFS greedy algorithm

* Data (n = 4 data points in R for d = 4)

i 1 13 1 2 0O
Ao @ |_|-1 -3 0 -2
gl 0 2 1 3
c'iI _ —2 0 -3 -—-1.
*Stepj =1

, /1111
S=0  st=w, 6=(377

achieves gain(¥;) = 3% + (—3)? + 3% + (—3)? = 36



Sample run of 2-BFS greedy algorithm (2)

* Data (n = 4 data points in R for d = 4)

i ] 13 1 2 O
A = C_iér _ -1 -3 0 -2
a1 0 2 1 3
a2 0 3 -1
PR = 1 11 1
S, =span(#,), St =NS@E]), B, = (E'_E'E"E)

achieves gain(v,) = 2% + 22 + (—2)* + (—2)* = 16



Best fitting line ()

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 5;_; = span(vy, ..., 13]-_1)

3

2 n

16



Optimality of k-BFS greedy algorithm

Theorem: Consider any dataset d4, ..., d,, and any k
1. k-BFS greedy algorithm finds k-dim. subspace S;, such that
gain(S,) = gain(W)

for all k-dim. subspaces W

2. Non-negative values o; \/galn(v ) satisfy



More properties of k-BFS greedy algorithm

Theorem: Let A be n X d matrix with rows d{, ..., d, ; let r = rank(4)
1. S, =span({dy,..,d,}) = CS(A")

o; = HAE’]-” > 0forallj €{1,..,r}

cost(Sy) = 0fy 1 + +++ + 072

iAﬁ’j forj € {1, ...,r}, then

9j

w N

s

Ifu] =

- -

A — 0'1u117

—

T4+ 0,00, 5]

and Uy, ..., U, are orthonormal



MNIST

P M %



Population structure within Europe

n = 1387 individuals
d = 197146 single nucleotide polymorphisms

TR

nawure

& 6 J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/natuie07331



2. Singular value decomposition



SVD existence theorem

SVD theorem: For any nXd matrix A of rank r, there exist
* ONB (uq, ..., U,) for CS(4) (called left singular vectors of 4),
* ONB (¥y, ..., V,) for CS(AT) (called right singular vectors of 4),
* positive numbersg; = - = g, > 0 (called singular values of A)

such that

- - —

A= o u v + -+ o U, v
This decomposition is called a singular value decomposition (SVD) of A
Proof: By construction, using k-BFS greedy algorithm

22



SVD as matrix factorization

— >

* Compact SVD: Given SVD A = gu4 v
A=UxV"

I+ -+ 0,U,.7, can write

where
o,
— - ., .
U p— ul eee ur ) Z p— . ) V p— vl P UT'
0-7"_

* Noticethat UTU =1,,, V'V = I;, and X is invertible r X r diagonal matrix
* See reading for description of "Full SVD" variant
« Compact SVD of transposeis AT = VIUT



SVD in NumPy

numpy.linalg.svd
* External call to _gesdd from LAPACK ("Linear Algebra Package")

* Pay attention to the options (e.g., full matrices)
* Time complexity: O(nd min{n, d})



3. Covariance matrices and PCA



Multivariate data

e Data points d;, ..., d, € R%, e.g.,

a; =(0,-2,+2,-1,0,+1,-2,-1,-2,42,0,—1,+1,..) € R?

* Each d; contains d measurements (a.k.a. "variables" or "feature" values)
* It is typical to center the data: subtract the mean vector

from each data point a;



Covariance matrix

* If data points a4, ..., d,, € R2 are already centered, then their
(empirical) covariance matrix is the n X d matrix

1 n
C — _z a7
n . L™l
i=1
* The (i, j)* component of C is the (empirical) covariance between the

ith "feature" and the jth "feature"
* C;;is the variance of the ith "feature"

: . : 1
* |f data points are stacked as rows in n X d matrix 4, then C = ;ATA



Principal components analysis

* Principal components analysis (PCA): linearly transform (centered)
data dq, ..., d,, € R% by an d X r matrix Q
B)i —_ Q_)TC_l)i R
so that "features" in new data set b4, ..., b,, are
* Uncorrelated (zero covariance between different features)
e Ordered so that variance is non-increasing (e.g., feature 1 has highest
variance, feature 2 has next highest variance, ...)

* Desired matrix Q is given by right singular vectors of A, with order
given by corresponding singular values of A (from largest to smallest)

 Variances are the squares of the singular values of A (divided by n)



Eigenvectors and eigenvalues

PCA usually defined by eigenvectors of covariance matrix C = ~ATA

n
If SVD factorization of Ais A = UXV' T, then matrix V diagonalizes C:
1
VTCYy = —%°
n

* Eigenvectors of C are right singular vectors of A
e Eigenvalues of C are squared singular values of A (divided by n)

* jth largest eigenvalue of C is variance of the data set in direction 13’]-



Bivariate normal distribution

2.0

1.5+

* Example: (infinitely many) data Lo
from bivariate normal distribution )
N(O 10/9 2/3 ) el
'L2/3 10/9 o
 (Population) covariance matrix has 20
eigenvalues/eigenvectors .
1= S \/_ :

3, =2 [ 1] 3 oo

2 9’ 2 \/'_ 051

—-1.0

—1.51

-2.0




MNIST

* Example: MNIST (just the 8's), n = 6000, d = 784

* 10 images sorted by ¥ ' 7,

R9EKLE I ERFS

31



Dimension reduction with PCA

* PCA transformation: Linear map V': R¢ - R", where V € R%*" is
matrix of right singular vectors of centered data matrix A € R**¢
(ordered by corresponding singular values, from largest to smallest)

* To reduce to dimension k, just keep of each
transformed vector
b= , )=V'Ta

e Same as using only first k right singular vectors in V



Dimension reduction of MNIST

* Variance Accounted For: Lol
k —
=1 Var(bl)
VAF = S—— 508
-, var(a;) 3
§(16-
e Axis-aligned: b = q, 3041
ordered by Var(bl-) (largest to smallest) g 0]
* PCA: 1_9) — VTC_i —— axis-aligned
0.0 — PCA

0 100 200 300 400 500 600 700 800
K



4. Power method



Best fitting line ()

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 5;_; = span(vy, ..., 13]-_1)

3

2 n
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Powers of a positive semidefinite matrix

e If SVD factorization of Ais A = UXV", then V diagonalizes A" A:
VT(ATA) = 32

e V also diagonalizes (AT A)?:
VT(ATA)2V = 5

* V also diagonalizes (AT A)3:
VT(ATA)3V = 56

* So, forany t:
(ATA)t = 60,0 + 620,10, + -+ 20,1



Plot of (A T A)%x for all unit vectors x € R?

Powers of ATA

q 1/1\/5 1/\42 o

=< 0.00 A

—0.25 A

—0.50 A

—0.75 A

—1.00 A
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X1



Powers of AT A

1/x/§ 1//2
—1

X2

1.5 A

1.0 A

0.5 1

0.0 1

—0.5 A

—1.0 -

—1.5 A

Plot of (A T A)1x for all unit vectors x € R?

-15 -1.0 -0.5 0.0 0.5 1.0 1.5
X1

t=1
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Powers of AT A

1/x/§ 1//2
—1

Plot of (A T A)2x for all unit vectors x € R?
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Powers of AT A

1/x/§ 1//2
—1

X2

Plot of (A T A)3x for all unit vectors x € R?
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Plot of (A T A)%x for all unit vectors x € R?

Powers of AT A
1 /x/E 1/V2 |
—1 |



Multiplying powers of AT A by a vector

* Forany t:
o \2t | o2t o2t
(ATA)t = gt ((—1) VU + (—2) VU + -+ (—r) vrv,T>
01 01 01

* If 0, > 0,, then forany ¥ € R s.t. ¥ - ¥; # 0 and large enough t,
1 2 1

(ATA)'X = (X - U;)of"
* If gy = -+ = 0}, > 041, and X not orthogonal to span{vy, ..., ¥, } , then get
vector (approximately) in span of vy, ..., 5p (all such vectors are equally good!)

e Also: can compute (AT A)tX iteratively



Power method

 Input: n X d matrix A
« Randomly pick a d-dimensional unit vector x
*Forj = 1,2,...,tdo
. - — 1 T -
X = g A A
* Return x




Use in k-BFS greedy algorithm

* Step j of k-BFS greedy algorithm: Solve "Best Fitting Line" problem
restricted to orthogonal complement of 5;_; = span(vy, ..., 17]-_1)

* Q: How to ensure we restrict to Sjl_l ?

» A: Run power method on data Py, dy, ..., Py dy, for W = Si-
* Then every v € S;_; has (v, Pya;) = 0 for all i



Use in implementations

* LAPACK implementation of SVD does not use power method

* However, main idea of power method is used in "big data" settings
when, e.g., cannot even load A into memory



5. Low-rank approximations



Low-rank matrix approximation

* Problem: Given n X d matrix A and non-negative integer k, find a
n X d matrix B of rank k so that

n

2
zz .j — Bij)
i=1j=1

is as small as possible.

* Motivation: Rank k matrix can be represented using (n + d)k
numbers (whereas a n X d matrix requires nd numbers)

* Space savingsifk <nd/(n+ d)



Truncated SVD

e Rank-k truncated SVD of n X d matrix 4 of rank r (for k < r):

2 - - —

A = o, V] + -+ 0 Uk Uy
* Drop the r — k terms in SVD corresponding to r — k smallest singular values
e Matrix A also called the rank-k SVD approximation of A

48



Eckart-Young Theorem

 Eckart-Young Theorem: For any n X d matrix A of rankr,any k < r,
and any n X d matrix B of rank k,

Zn: z i~ Bij)’

=1=

Reconstruction error of A

where 4 is rank-k SVD approximation of 4, and g; = -+ > o, are the
singular values of A

* This is a corollary of the k-BFS greedy algorithm's guarantees



Example: image compression

510x640 pixel image: 3 separate 510xX640 matrices, one per RGB color

50



Rank 8 SVD approximations

* Replace each matrix by rank 8 SVD approximation

0

100 , et

PP rs os 13 == T 37 T =vareur i

- e - - ——— > —— — ————

200 ‘ N1l
S : 1 44 R
300 (11} “, ;i' : .. ..,
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Rank 16 SVD approximations

* Replace each matrix by rank 16 SVD approximation

100

200

300
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Rank 32 SVD approximations

* Replace each matrix by rank 32 SVD approximation

0
100 T E R TR E S SRR R E T
R S IR T e P
i T - ;-f-‘v.—.;--';::.".'q"-‘-—'r—',—-.---.r.rw .l- - ”
200 % ' 1
-

300




Rank 64 SVD approximations

* Replace each matrix by rank 64 SVD approximation

0

100 W W e
. = ; .7‘—3;- ;g;.;{'.-ﬁ o__‘ -,u,’._: il '; 1

200

300




Statistical application

* Consider the following statistical model: A is n X d matrix of
independent random variables, where

2
Ayj ~N(H;;,0%)
* Here, H is an X d matrix of rank k, regarded as the model parameter

 Maximum likelihood estimator for H: rank-k SVD approx. of A
* Intuitive interpretation: truncated SVD attempts to remove the noise



6. Moore-Penrose pseudoinverse



Interpretation provided by SVD

* SVD factorization of A:
A=UxV"
* Interpretation: for X € CS(A"),
« & = V'X: coordinates of X in V-basis
. E = Ya: Scale each coordinate according to diagonal entries of X
* Interpret ﬁ as coordinates in U-basis, and return vector U,E



Moore-Penrose pseudoinverse

- -

* For A = g,U V; + -+ 0,U, V', Moore-Penrose pseudoinverse is

AT =y~ 1yT
* Interpretation: for x € CS(4),
* B = U'X: coordinates of X in U-basis

s a = Z_lﬁz Scale each coordinate according to diagonal entries of 71
* Interpret a as coordinates in V-basis, and return vector Va

e Useful fact #1: Fundamental subspaces of AT are same as that of AT

* Useful fact #2: When restricting attention to CS(A") and CS(4), the
linear maps A and A" are inverses of each other (in the usual sense)




Ax — AT(Ax)

59



Relation to orthogonal projections

* Useful fact #3:
AAT = USVTVETNUT = UUT = Pega

* Write b € R" as b = BII -+ I;l for EII € CS(4) and l_;l € NS(4")
e Recall NS(AT) = NS(4™)

e Then ATh = AT(I_))” + l;)l) = AJrI;”

- So Ath is unique ¥ € CS(AT) such that Ay = I;”

» Conclusion: AATh = EII




Application: solving normal equations

* Normal equations:
ATAw = A"h
* Solution in row space of A:

* Why is W* a solution?
AW* = AA™D = Pcg(a)b
* Fact: If w # w*also solves the normal equations, then ||w|| > |[w*||

 Can always make w shorter by removing the part of w in NS(4)
* There is only one solution to Aw = PCS(A)I_D> inCS(4")



/. Latent semantic analysis



Document-term matrix

 n documents in a corpus
* d words in vocabulary
* Create n X d matrix A of word counts per document

B S P P




Latent semantic analysis (LSA)

e Rank-k truncated SVD of A:

Y
[
)
M)
<
_I

where

)
I
)

=
<l
w
M)
I
<V
I
A}
p—
<y}
an

Ok

e Use ith row of U € R™ ¥ as representation of ith document

* Use jt column of EV'T € R¥*? as representation of j* vocabulary word



Topic modeling with LSA

e Each row of A is approximated by a linear combination of the k rows
of XVT € RFXd
e Interpret each row of 2V T as a representation of a "topic"
e ith row of U: "weights" that it" document puts each of the k topics

 Alternatives to LSA (e.g., "Latent Dirichlet Allocation"):
* Also give low-rank approximations to A
e But also have probabilistic interpretations



Word embeddings

 Word embeddings: vector representations of vocabulary words

* Default ("one-hot") word embeddings:
« ithvocabulary word: ¢; = (0, ..., 0, 1 ,0,...,0)
ith position
 Geometry: all words are orthogonal to each other

* Word embeddings from LSA:

 Geometry: reflects co-occurrence statistics in documents
* Hope that truncated SVD removes corpus-specific "noise"

e Using word embeddings in machine learning:

* Get word embeddings (by LSA or other means) from a large corpus of documents
(not just the training data for "downstream" application)

* Represent words using the embeddings in data for downstream application



