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Goals of prediction



General statistical model for prediction:

▶ Regard outcome that we want to predict as a random variable Y , and
corresponding feature vector we observe as a random vector X

▶ Joint distribution P of (X,Y ) is the “full population” of interest
(Sometimes write as PX,Y )

Problem: Create a program f : X → Y that, given X, returns a prediction of Y

Usually these programs are called predictors or prediction functions
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How to measure how good/bad a prediction is?

Loss function loss : Y × Y → R measures how bad ŷ is as a prediction of the
outcome y

loss(ŷ, y)

(Loss is usually non-negative, and smaller loss is better)
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Example: zero-one loss (usually for classification problems)

loss0/1(ŷ, y) =

{
1 if ŷ ̸= y

0 otherwise
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Example: squared error, a.k.a. square loss (for Y ⊆ R)

losssq(ŷ, y) = (ŷ − y)2
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X and Y are random variables, so loss(f(X), Y ) is also a random variable

Standard “average-case” benchmark: expected value of the loss, a.k.a. risk:

Risk[f ] = E[loss(f(X), Y )]

Expectation “integrates” loss(f(x), y) with respect to joint distribution of (X, Y )
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Standard loss functions are usually simplifications of application-specific loss

Example: spam filtering, Y = {ham, spam}
▶ Mildly annoying if spam email is erroneous put in the inbox

▶ But very bad if real (important) email is put in spam folder

▶ Zero-one loss treats both types of mistakes equally

▶ Perhaps better to use loss(ŷ, y) given by

y = ham y = spam

ŷ = ham 0 1
ŷ = spam 9 0

This is an example of a cost-sensitive loss function
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Tricky coins

Can you predict the outcome of a coin toss?
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I have 1000 different coins; heads-biases are θ1, . . . , θ1000 ∈ [0, 1]
I pick a coin randomly and toss it; you need to guess the outcome
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Optimal predictions of binary outcomes



Suppose you want to predict binary outcome Y where range(Y ) = {0, 1} to
minimize the risk under zero-one loss (i.e., error rate)

X = side-information, potentially informative about distribution of Y

Example:

▶ Y is outcome of coin toss in “tricky coins” scenario

▶ X is identity of the coin I picked
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▶ Best prediction given X = x is

f ⋆(x) =





if

if

if

▶ f ⋆(x) depends on the conditional distribution of Y given X = x
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Role of training data

Difficulty: optimal predictions/predictors depend on distribution of (X, Y )

▶ E.g., if distribution (X, Y ) corresponds to entire human population, the need
to poll entire human population to calculate optimal prediction / predictors

Training data can help, under certain assumptions

▶ Nearest neighbor: Assume training data is enough to “cover” most x’s
(w.r.t. distance function being used) and supply correct labels

▶ Generative models: Assume training data yields good estimate of PX,Y (via
PY and PX|Y )

▶ . . .

11 / 25



Common assumption: training data is “representative” sample of population

Usual interpretation: training data (X(1), Y (1)), . . . , (X(n), Y (n)) form independent
and identically distributed (i.i.d.) sample from distribution of (X, Y )

Notation:
((X(i), Y (i)))ni=1

i.i.d.∼ (X,Y )

or
((X(i), Y (i)))ni=1

i.i.d.∼ P

(if P is the distribution of (X,Y ))
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Example: suppose only one coin (or you ignore the identity of the chosen coin)

▶ Let Ŷ be the majority value among Y (1), . . . , Y (n), i.e.,

Ŷ =





0 if more 0s than 1s in Y (1), . . . , Y (n)

1 if more 1s than 0s in Y (1), . . . , Y (n)

either 0 or 1 if equal number of 0s and 1s

▶ What’s the probability that Ŷ = y⋆?
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General case:

▶ Let f̂(x) be the majority value among all Y (i) such that X(i) = x
▶ If no such examples exist, then set f̂(x) arbitrarily

▶ Same as previous example, except with D = |range(X)| “coins”, and as few as
n/D training data pertinent to some coins
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Some ways training data can help when range(X) is large/infinite
▶ Assume/leverage “local regularity”

▶ Prediction at x “benefits” from data (X(i), Y (i)) for which X(i) is nearby x

▶ Assume/leverage “global structure”
▶ Prediction at x “benefits” from all data (X(i), Y (i))
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Why i.i.d. assumption? Consider some gross violations:

▶ Gross violation #1: Distribution of training data has nothing to do with
distribution of (X, Y )

▶ Gross violation #2: Suppose (X(1), Y (1)) ∼ (X,Y ), and then we define
(X(i), Y (i)) = (X(1), Y (1)) for all i = 2, . . . , n
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Role of test data



Assumption: test data (X̃(1), Ỹ (1)), . . . , (X̃(m), Ỹ (m))
i.i.d.∼ (X, Y ), all independent

of training data

Suppose we have created a classifier f̂ : X → Y using training data, and
we would like to know how good it is

▶ (True) error rate is err[f̂ ] = E[loss0/1(f̂(X), Y )]

▶ To calculate err[f̂ ], we need to know the distribution of (X,Y )

▶ Using test data, we estimate err[f̂ ] by

ẽrr[f̂ ] =
1

m

m∑

i=1

loss0/1(f̂(X̃
(i)), Ỹ (i))

This is the test error rate
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Test error rate: ẽrr[f̂ ] =
S

m
where

S =
m∑

i=1

1{f̂(X̃(i)) ̸= Ỹ (i)}

is sum of m i.i.d. Bernoulli(θ) random variables where θ = err[f̂ ]

Distribution of S is Binomial with m trials and success probability θ

▶ Notation: S ∼ Binomial(m, θ)
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Facts about S ∼ Binomial(m, θ)

▶ E(S) = mθ

▶ var(S) = mθ(1− θ)

▶ S −mθ√
mθ(1− θ)

−→ N(0, 1) as m → ∞ (by Central Limit Theorem)
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Why should test data be independent of training data?
Why doesn’t previous argument apply with i.i.d. training data?
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Cross validation



Common practice: split dataset into three parts

1. Training data: provided as input to learning algorithms

2. Validation data (a.k.a. development data, held-out data): used to evaluate
experimentation with models, tweaks to learning algorithm, etc.

3. Test data: only used after you have settled on the learning
algorithm/hyperparameters/etc., to evaluate the final predictor
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(Hold-out) cross validation: simulate splitting dataset into training + test data
. . . all done only using training data

training data

test data test data
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S2
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K-fold cross validation
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Leave one out cross validation (LOOCV): K-fold cross validation with K = n

25 / 25


