Optimization by gradient methods

COMS 4771 Fall 2025

Unconstrained optimization problems



Common form of optimization problem in machine learning:

i J
min J(w)

We would like an algorithm that, given the objective function J, finds particular
setting of w so that J(w) is as small as possible

1/33

» What does it mean to be “given J"7?
» What types of objective functions can we hope to minimize?
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Review of multivariate differential calculus

A function J: R? — R is differentiable if, for every u € R?, there is an affine
function A: R? — R such that

lim J(w) — A(w)

wou - flw —ul

— 0

Affine function A is called the (best) affine approximation of J at u

A may depend on u—i.e., possibly a different A for each u
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About the affine approximation:
» Since A is affine, we can write it as

A(w) =

» m € R? is the “slope” (and specifies a linear function)
» b€ Ris the “intercept”
» The intercept must be b = because

J(u) =

» So we can write A as
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About the affine approximation:

Letting e, ... e be standard coordinate basis for R?, write m = 3¢ m, e

Since A(w) = J(u) +m"(w — u) is best affine approximation of J at w,

@)y — (%) )y — :
0 — lim J(u+tel) — A(u + tel) — lim J(u+te”) — (J(u) 4+ tm;)
t—0 ‘t| t—0 |t|

since u + te® differs from w by ¢ € R in the i-th coordinate

Whether t approaches zero from left or right, we find

t—0
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Vector-valued function (a.k.a. vector field) of all partial derivatives of .J is called
the gradient of J, written VJ: RY — R4

VJ(u) = (ﬂ(“%'“’%(“))

5’w1
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Summary: If J: R? — R is differentiable, then for any u € R?,

o () = () + VI )" (w = )

W lw = ]

=0
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Gradient descent

(Back to min,,cgs J(w) where J is differentiable)

Question: Given candidate setting of variables w = u € R?, achieving objective
value J(u), how can we change u to achieve a lower objective value?
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Upshot: Modify u by subtracting nV.J(u) for some 1 > 0

Caveat: Approximations in our argument are OK only if “change” is “small
enough” (which means 7 should be “small enough™)
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Gradient descent: iterative method that attempts to minimize J: RY — R
> Initialize w(©® € R4

» For iteration ¢ = 1,2,... until “stopping condition” is satisfied:

w w1 — 5,V (WD) (update rule)

» Return final w®
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What’s missing in this algorithm description?
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Examples of gradient descent algorithms



Sum of squared errors objective from OLS

Jw)= 3 (a"w—y)?

(z,y)€S

for dataset S from R% x R

» Use linearity and chain rule to get formula for

0J
ow; (w) = S:

(z,y)€S

Viw)= Y

» Therefore

(z,y)€S
» Update rule in iteration ¢:

w® D — g 37

(z,y)€S

Negative log-likelihood from logistic regression

Jw) =3 (1 +e™) - yaTw)

(z,y)€S

for dataset 8 from R% x {0,1}

» Use linearity and chain rule to get formula for

0J
ow; (w) = ;j

(z,y)€S
» Therefore

Viw)= Y

(z,y)€S
» Update rule in iteration ¢:

(z,y)€S
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def learn(train_x, train_y, eta=0.1, num_steps=1000):
w = np.zeros(train_x.shape[1])
for t in range(num_steps):
w += eta * (train_y - 1/(l+np.exp(-train_x.dot(w)))).dot(train_x)
return w
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Synthetic example: X ~ N((0,0), ), conditional distribution of Y given X = x is
Bernoulli(logistic(w™x)) for w = (3/2,—1/2)

> n =100 training examples § "< (X,Y)
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n, = 0.1 starting from w(® = (0,0)

negative log-likelihoo

n, = 0.1 starting from w(® = (0,0)

o~

=

70 1
68 1
66 A
64 1
62 1
60 A
58 1
56 1
54 - 5¢
; 3 5
iteration
04 76.8
0.2 75.0
0.0 r73.2
02 r71.4
04 69.6
_0.6 67.8
_0.8 66.0
B '90.5 " 64.2
w1
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n; = 0.05 starting from w(® = (0, 0)

04 76.8
0.2 75.0
0.0 -73.2
02 -71.4
=
o4 -69.6
_0.6 67.8
0.8 66.0

o | | 64.2
-0.5 0.0 05 1.0

Wi

1 = 0.01 starting from w® = (0,0)

04 76.8
0.2 75.0
0.0 -73.2

02 -71.4

=

o4 -69.6
_0.6 67.8
0.8 66.0

o | | 64.2
-0.5 0.0 05 1.0

Wi
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Properties of gradient descent

Guarantee about gradient descent updates: If J is “smooth enough”, then
there is a choice for n > 0 such that, for any u € R?,

J(w=nVI(u) < J(w) = 2V ()]
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Guarantee about gradient descent for convex objectives: If J is convex and
“smooth enough”, then there is a choice for 7 > 0 such that, for any w® e R
iterates of gradient descent w(!) w®, ... (with n, = n) satisfy

. (t) _ .
JYim J(w™) = min J(w)
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Convex functions



A function J: R? — R is convex if, for all u,v € R?, and all « € [0, 1],

J(1—a)u+av) < (1 —a)J(u) + aJ(v)

N

not convex convex
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A differentiable function J: R? — R is convex if, for all u,w € RY,

J(w) > J(u) + VJ(u) (w —u)

i.e., J lies above all of its affine approximations

A
v
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A continuously twice-differentiable function J: RY — R is convex if, for all
u € R?, the d x d matrix of second derivatives of J at u is positive semidefinite
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Operations that preserve convexity:
» Sum of convex functions J;: R — R and J,: R —» R

J(w) = Ji(w) + J2(w)
» Non-negative scalar multiple of a convex function Jy: R? — R
J(w) =cJy(w), ¢>0
» Max of convex functions J;: R — R and J5: RY - R
J(w) = max{J;(w), Jo(w)}
» Composition of convex function Jy: R¥ — R with affine mapping
J(w) = Jo(Mw + b)

for M € R¥*4 and b € R*
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Example: sum of squared errors J(w) =}, ycs(@"w — y)?
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Why convexity of J helps with gradient descent:

» Convexity ensures negative gradient —V .J(u) satisfies
(=VJ(w) (w—u) = J(u) = J(w)

for all u,w € R4

» Suppose w is minimizer of J, and you currently have u in hand
» Ideal direction to move in: d =w —u
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Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be
written as sum

J(w) => " JD(w)
i=1
E.g., sum of losses on training examples
T (w) = loss(fu(¢), y)

Computational cost to compute V.J(w)?
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Alternative: instead of using

VJ(w) = zn: VJD(w),

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for J(w) = >_1 | J@(w)
> Initialize w(® € R*

» For iteration ¢t = 1,2,... until “stopping condition” is satisfied:

w — wY — v T (DY where I, ~ Unif({1,...,n})

» Return final w®
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Some practical variants of SGD:

» Use sampling without replacement to choose Iy, I, ..., I, (i.e., go through
terms in a uniformly random order)

» Called SGD without replacement

» Instead of updating with gradient of single term, update with sum of gradients
for next B terms

» Called minibatch SGD; B is the minibatch size
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Iris dataset, treating versicolor and virginica as a single class

» Maximizing log-likelihood in logistic regression with gradient descent and with
SGD (both using 1, = 0.01, starting from w(® = (0,0))

_76 4
3
8 -78+
<
[J)
X
E;-—SO-
—821 —»<— gradient descent
stochastic gradient descent

1 2 3 4 5
number of passes through dataset
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Practical considerations



» Conditioning

» Initialization w(® ¢ R4
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» Choice of “step size” 7; > 0 (a.k.a. “learning rate")

» Stopping condition
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