
Optimization by gradient methods

COMS 4771 Fall 2025

Unconstrained optimization problems

Common form of optimization problem in machine learning:

min
w∈Rd

J(w)

We would like an algorithm that, given the objective function J , finds particular
setting of w so that J(w) is as small as possible

1 / 33

▶ What does it mean to be “given J”?

▶ What types of objective functions can we hope to minimize?

2 / 33

Review of multivariate differential calculus

A function J : Rd → R is differentiable if, for every u ∈ Rd, there is an affine
function A : Rd → R such that

lim
w→u

J(w)− A(w)

∥w − u∥ = 0

Affine function A is called the (best) affine approximation of J at u

J(w)

u

A may depend on u—i.e., possibly a different A for each u

3 / 33

About the affine approximation:

▶ Since A is affine, we can write it as

A(w) =

▶ m ∈ Rd is the “slope” (and specifies a linear function)

▶ b ∈ R is the “intercept”

▶ The intercept must be b = because

J(u) =

▶ So we can write A as

A(w) = J(u) +mT(w − u)

4 / 33

About the affine approximation:
Letting e(1), . . . , e(d) be standard coordinate basis for Rd, write m =

∑d
i=1mi e

(i)

Since A(w) = J(u) +mT(w − u) is best affine approximation of J at u,

0 = lim
t→0

J(u+ te(i))− A(u+ te(i))

|t| = lim
t→0

J(u+ te(i))− (J(u) + tmi)

|t|

since u+ te(i) differs from u by t ∈ R in the i-th coordinate

Whether t approaches zero from left or right, we find

mi = lim
t→0

=

5 / 33

Vector-valued function (a.k.a. vector field) of all partial derivatives of J is called
the gradient of J , written ∇J : Rd → Rd

∇J(u) =
(

∂J

∂w1

(u), . . . ,
∂J

∂wd

(u)

)

6 / 33

Summary: If J : Rd → R is differentiable, then for any u ∈ Rd,

lim
w→u

J(w)− (J(u) +∇J(u)T(w − u))

∥w − u∥ = 0

7 / 33

Gradient descent

(Back to minw∈Rd J(w) where J is differentiable)

Question: Given candidate setting of variables w = u ∈ Rd, achieving objective
value J(u), how can we change u to achieve a lower objective value?

8 / 33

Upshot: Modify u by subtracting η∇J(u) for some η > 0

Caveat: Approximations in our argument are OK only if “change” is “small
enough” (which means η should be “small enough”)

9 / 33

Gradient descent: iterative method that attempts to minimize J : Rd → R
▶ Initialize w(0) ∈ Rd

▶ For iteration t = 1, 2, . . . until “stopping condition” is satisfied:

w(t) ← w(t−1) − ηt∇J(w(t−1)) (update rule)

▶ Return final w(t)

10 / 33

What’s missing in this algorithm description?

11 / 33

Examples of gradient descent algorithms

Sum of squared errors objective from OLS

J(w) =
∑

(x,y)∈S
(xTw − y)2

for dataset S from Rd × R
▶ Use linearity and chain rule to get formula for ∂J

∂wi
:

∂J

∂wi

(w) =
∑

(x,y)∈S

▶ Therefore
∇J(w) =

∑

(x,y)∈S
▶ Update rule in iteration t:

w(t) ← w(t−1) − ηt
∑

(x,y)∈S

12 / 33

Negative log-likelihood from logistic regression

J(w) =
∑

(x,y)∈S

(
ln(1 + ex

Tw)− yxTw
)

for dataset S from Rd × {0, 1}
▶ Use linearity and chain rule to get formula for ∂J

∂wi
:

∂J

∂wi

(w) =
∑

(x,y)∈S

▶ Therefore
∇J(w) =

∑

(x,y)∈S
▶ Update rule in iteration t:

w(t) ← w(t−1) − ηt
∑

(x,y)∈S

13 / 33

def learn(train_x, train_y, eta=0.1, num_steps=1000):

w = np.zeros(train_x.shape[1])

for t in range(num_steps):

w += eta * (train_y - 1/(1+np.exp(-train_x.dot(w)))).dot(train_x)

return w

14 / 33

Synthetic example: X ∼ N((0, 0), I), conditional distribution of Y given X = x is
Bernoulli(logistic(wTx)) for w = (3/2,−1/2)
▶ n = 100 training examples S

i.i.d.∼ (X,Y)

2 1 0 1 2
x1

2

1

0

1

2

x 2

class 0
class 1

15 / 33

ηt = 0.1 starting from w(0) = (0, 0)

1 2 3 4 5
iteration

54

56

58

60

62

64

66

68

70
ne

ga
tiv

e
lo

g-
lik

el
ih

oo
d

16 / 33

ηt = 0.1 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
2

0

1

2

3

4
5

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

17 / 33

ηt = 0.05 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4
w

2

0

1 2 345

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

18 / 33

ηt = 0.01 starting from w(0) = (0, 0)

0.5 0.0 0.5 1.0 1.5 2.0 2.5
w1

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

w
2

0
1 2 3 45

64.2

66.0

67.8

69.6

71.4

73.2

75.0

76.8

19 / 33

Properties of gradient descent

Guarantee about gradient descent updates: If J is “smooth enough”, then
there is a choice for η > 0 such that, for any u ∈ Rd,

J(u− η∇J(u)) ≤ J(u)− η

2
∥∇J(u)∥2

20 / 33

Guarantee about gradient descent for convex objectives: If J is convex and
“smooth enough”, then there is a choice for η > 0 such that, for any w(0) ∈ Rd,
iterates of gradient descent w(1), w(2), . . . (with ηt = η) satisfy

lim
t→∞

J(w(t)) = min
w∈Rd

J(w)

21 / 33

Convex functions

A function J : Rd → R is convex if, for all u, v ∈ Rd, and all α ∈ [0, 1],

J((1− α)u+ αv) ≤ (1− α)J(u) + αJ(v)

not convex convex
u v u v

22 / 33

A differentiable function J : Rd → R is convex if, for all u,w ∈ Rd,

J(w) ≥ J(u) +∇J(u)T(w − u)

i.e., J lies above all of its affine approximations

J(w)

u

23 / 33

A continuously twice-differentiable function J : Rd → R is convex if, for all
u ∈ Rd, the d× d matrix of second derivatives of J at u is positive semidefinite

24 / 33

Operations that preserve convexity:

▶ Sum of convex functions J1 : Rd → R and J2 : Rd → R

J(w) = J1(w) + J2(w)

▶ Non-negative scalar multiple of a convex function J0 : Rd → R

J(w) = c J0(w), c ≥ 0

▶ Max of convex functions J1 : Rd → R and J2 : Rd → R

J(w) = max{J1(w), J2(w)}

▶ Composition of convex function J0 : Rk → R with affine mapping

J(w) = J0(Mw + b)

for M ∈ Rk×d and b ∈ Rk

25 / 33

Example: sum of squared errors J(w) =
∑

(x,y)∈S(x
Tw − y)2

26 / 33

Why convexity of J helps with gradient descent:

▶ Convexity ensures negative gradient −∇J(u) satisfies

(−∇J(u))T(w − u) ≥ J(u)− J(w)

for all u,w ∈ Rd

▶ Suppose w is minimizer of J , and you currently have u in hand

▶ Ideal direction to move in: δ = w − u

27 / 33

Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be
written as sum

J(w) =
n∑

i=1

J (i)(w)

E.g., sum of losses on training examples

J (i)(w) = loss(fw(x
(i)), y(i))

Computational cost to compute ∇J(w)?

28 / 33

Alternative: instead of using

∇J(w) =
n∑

i=1

∇J (i)(w),

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for J(w) =
∑n

i=1 J
(i)(w)

▶ Initialize w(0) ∈ Rd

▶ For iteration t = 1, 2, . . . until “stopping condition” is satisfied:

w(t) ← w(t−1) − ηt∇J (It)(w(t−1)) where It ∼ Unif({1, . . . , n})

▶ Return final w(t)

29 / 33

Some practical variants of SGD:
▶ Use sampling without replacement to choose I1, I2, . . . , In (i.e., go through

terms in a uniformly random order)
▶ Called SGD without replacement

▶ Instead of updating with gradient of single term, update with sum of gradients
for next B terms
▶ Called minibatch SGD; B is the minibatch size

30 / 33

Iris dataset, treating versicolor and virginica as a single class

▶ Maximizing log-likelihood in logistic regression with gradient descent and with
SGD (both using ηt = 0.01, starting from w(0) = (0, 0))

1 2 3 4 5
number of passes through dataset

82

80

78

76

lo
g-

lik
el

ih
oo

d

gradient descent
stochastic gradient descent

31 / 33

Practical considerations

▶ Conditioning

▶ Initialization w(0) ∈ Rd

32 / 33

▶ Choice of “step size” ηt > 0 (a.k.a. “learning rate”)

▶ Stopping condition

33 / 33

