Optimization by gradient methods

COMS 4771 Fall 2025

Unconstrained optimization problems

Common form of optimization problem in machine learning:

i J
min J(w)

We would like an algorithm that, given the objective function J, finds particular
setting of w so that J(w) is as small as possible

1/33

» What does it mean to be “given J"7?
» What types of objective functions can we hope to minimize?

2/33

Review of multivariate differential calculus

A function J: R? — R is differentiable if, for every u € R?, there is an affine
function A: R? — R such that

lim J(w) — A(w)

wou - flw —ul

— 0

Affine function A is called the (best) affine approximation of J at u

A may depend on u—i.e., possibly a different A for each u

3/33

About the affine approximation:
» Since A is affine, we can write it as

A(w) =

» m € R? is the “slope” (and specifies a linear function)
» b€ Ris the “intercept”
» The intercept must be b = because

J(u) =

» So we can write A as

4/33
About the affine approximation:

Letting e, ... e be standard coordinate basis for R?, write m = 3¢ m, e

Since A(w) = J(u) +m"(w — u) is best affine approximation of J at w,

@)y — (%))y — :
0 — lim J(u+tel) — A(u + tel) — lim J(u+te”) — (J(u) 4+ tm;)
t—0 ‘t| t—0 |t|

since u + te® differs from w by ¢ € R in the i-th coordinate

Whether t approaches zero from left or right, we find

t—0

5/33

Vector-valued function (a.k.a. vector field) of all partial derivatives of .J is called
the gradient of J, written VJ: RY — R4

VJ(u) = (ﬂ(“%'“’%(“))

5’w1

6/33

Summary: If J: R? — R is differentiable, then for any u € R?,

o () = () + VI)" (w =)

W lw =]

=0

7/33

Gradient descent

(Back to min,,cgs J(w) where J is differentiable)

Question: Given candidate setting of variables w = u € R?, achieving objective
value J(u), how can we change u to achieve a lower objective value?

8/33

Upshot: Modify u by subtracting nV.J(u) for some 1 > 0

Caveat: Approximations in our argument are OK only if “change” is “small
enough” (which means 7 should be “small enough™)

9/33

Gradient descent: iterative method that attempts to minimize J: RY — R
> Initialize w(©® € R4

» For iteration ¢ = 1,2,... until “stopping condition” is satisfied:

w w1 — 5,V (WD) (update rule)

» Return final w®

10/33

What’s missing in this algorithm description?

11/33

Examples of gradient descent algorithms

Sum of squared errors objective from OLS

Jw)= 3 (a"w—y)?

(z,y)€S

for dataset S from R% x R

» Use linearity and chain rule to get formula for

0J
ow; (w) = S:

(z,y)€S

Viw)= Y

» Therefore

(z,y)€S
» Update rule in iteration ¢:

w® D — g 37

(z,y)€S

Negative log-likelihood from logistic regression

Jw) =3 (1 +e™) - yaTw)

(z,y)€S

for dataset 8 from R% x {0,1}

» Use linearity and chain rule to get formula for

0J
ow; (w) = ;j

(z,y)€S
» Therefore

Viw)= Y

(z,y)€S
» Update rule in iteration ¢:

(z,y)€S

12/33

13/33

def learn(train_x, train_y, eta=0.1, num_steps=1000):
w = np.zeros(train_x.shape[1])
for t in range(num_steps):
w += eta * (train_y - 1/(l+np.exp(-train_x.dot(w)))).dot(train_x)
return w

14/33

Synthetic example: X ~ N((0,0),), conditional distribution of Y given X = x is
Bernoulli(logistic(w™x)) for w = (3/2,—1/2)

> n =100 training examples § "< (X,Y)

X
x class 0 %
class 1 X
2 % o
X O X
0% o o
1 X 000
x x X o X5 X °% o
pr s o)
>(<V >e<x % &<X >Q) le) (9
Q © X o)
0 X o Q
% oxX . Xo*o 4 o
% x X O X
X X x0 ox O
-1 x % >><<c'o o
>$< [e) (@] (o]
o)
) oK
-2 -1 0 1 2
X1

15/33

n, = 0.1 starting from w(® = (0,0)

negative log-likelihoo

n, = 0.1 starting from w(® = (0,0)

o~

=

70 1
68 1
66 A
64 1
62 1
60 A
58 1
56 1
54 - 5¢
; 3 5
iteration
04 76.8
0.2 75.0
0.0 r73.2
02 r71.4
04 69.6
_0.6 67.8
_0.8 66.0
B '90.5 " 64.2
w1

16 /33

17/33

n; = 0.05 starting from w(® = (0, 0)

04 76.8
0.2 75.0
0.0 -73.2
02 -71.4
=
o4 -69.6
_0.6 67.8
0.8 66.0

o | | 64.2
-0.5 0.0 05 1.0

Wi

1 = 0.01 starting from w® = (0,0)

04 76.8
0.2 75.0
0.0 -73.2

02 -71.4

=

o4 -69.6
_0.6 67.8
0.8 66.0

o | | 64.2
-0.5 0.0 05 1.0

Wi

18/33

19/33

Properties of gradient descent

Guarantee about gradient descent updates: If J is “smooth enough”, then
there is a choice for n > 0 such that, for any u € R?,

J(w=nVI(u) < J(w) = 2V ()]

20/33

Guarantee about gradient descent for convex objectives: If J is convex and
“smooth enough”, then there is a choice for 7 > 0 such that, for any w® e R
iterates of gradient descent w(!) w®, ... (with n, = n) satisfy

. (t) _ .
JYim J(w™) = min J(w)

21/33

Convex functions

A function J: R? — R is convex if, for all u,v € R?, and all « € [0, 1],

J(1—a)u+av) < (1 —a)J(u) + aJ(v)

N

not convex convex

22/33

A differentiable function J: R? — R is convex if, for all u,w € RY,

J(w) > J(u) + VJ(u) (w —u)

i.e., J lies above all of its affine approximations

A
v

23/33

A continuously twice-differentiable function J: RY — R is convex if, for all
u € R?, the d x d matrix of second derivatives of J at u is positive semidefinite

24 /33
Operations that preserve convexity:
» Sum of convex functions J;: R — R and J,: R —» R

J(w) = Ji(w) + J2(w)
» Non-negative scalar multiple of a convex function Jy: R? — R
J(w) =cJy(w), ¢>0
» Max of convex functions J;: R — R and J5: RY - R
J(w) = max{J;(w), Jo(w)}
» Composition of convex function Jy: R¥ — R with affine mapping
J(w) = Jo(Mw + b)

for M € R¥*4 and b € R*

25/33

Example: sum of squared errors J(w) =}, ycs(@"w — y)?

26/33

Why convexity of J helps with gradient descent:

» Convexity ensures negative gradient —V .J(u) satisfies
(=VJ(w) (w—u) = J(u) = J(w)

for all u,w € R4

» Suppose w is minimizer of J, and you currently have u in hand
» Ideal direction to move in: d =w —u

27/33

Stochastic gradient descent

Many objective functions in machine learning are decomposable, i.e., can be
written as sum

J(w) => " JD(w)
i=1
E.g., sum of losses on training examples
T (w) = loss(fu(¢), y)

Computational cost to compute V.J(w)?

28/33

Alternative: instead of using

VJ(w) = zn: VJD(w),

just use one of the terms in the sum (chosen uniformly at random)

Stochastic gradient descent (SGD) for J(w) = >_1 | J@(w)
> Initialize w(® € R*

» For iteration ¢t = 1,2,... until “stopping condition” is satisfied:

w — wY — v T (DY where I, ~ Unif({1,...,n})

» Return final w®

20/33

Some practical variants of SGD:

» Use sampling without replacement to choose Iy, I, ..., I, (i.e., go through
terms in a uniformly random order)

» Called SGD without replacement

» Instead of updating with gradient of single term, update with sum of gradients
for next B terms

» Called minibatch SGD; B is the minibatch size

30/33

Iris dataset, treating versicolor and virginica as a single class

» Maximizing log-likelihood in logistic regression with gradient descent and with
SGD (both using 1, = 0.01, starting from w(® = (0,0))

_76 4
3
8 -78+
<
[J)
X
E;-—SO-
—821 —»<— gradient descent
stochastic gradient descent

1 2 3 4 5
number of passes through dataset

31/33

Practical considerations

» Conditioning

» Initialization w(® ¢ R4

32/33

» Choice of “step size” 7; > 0 (a.k.a. “learning rate")

» Stopping condition

33/33

