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1 Smooth functions

Smooth functions are functions whose derivatives (gradients) do not change too
quickly. The change in the derivative is the second-derivative, so smoothness
is a constraint on the second-derivatives of a function.

We say a twice-differentiable function J: R? — R is B-smooth if the
eigenvalues of its Hessian matrix at any point in R? are at most 3.

A consequence of -smoothness is the following. Recall that by Taylor’s
theorem, for any w, § € R?, there exists w € R? on the line segment between
w and w + 0 such that

1
J(w+0) = J(w) + VJ(w)76 + §5Tv2j(w)5.
If J is f-smooth, then we can bound the third term from above as
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Therefore, if J is S-smooth, then for any w,d € RY,

J(w+6) < J(w)+ VJ(w)6 + §||(5||2



2 Gradient descent on smooth objectives

Gradient descent starts with an initial point w® € R?, and for a given step

size 1, iteratively computes a sequence of points w, w®, ... as follows. For
t=1,2,...:
w® = D _ nVJ(w(t_l)).

2.1 Motivation

The motivation for the gradient descent update is the following. Suppose we
have a current point w € RY, and we would like to locally change it from w
to w 4+ 0 so as to decrease the objective value. How should we choose 7

In gradient descent, we consider the quadratic upper-bound that smooth-
ness grants, i.e.,

J(w+6) < J(w)+ VJ(w)6+ §||5||§,

and then choose ¢ to minimize this upper-bound. The upper-bound is a
convex quadratic function of §, so its minimizer can be written in closed-form.
The minimizer is the value of ¢ such that

VJ(w) 4+ 86 = 0.
In other words, it is §*(w), defined by

0 (w) = —%VJ(w).

Plugging in 0*(w) for § in the quadratic upper-bound gives
J(w+ 0" (w)) < J(w) + VJ(w)'6"(w) + g\W(w)H%

= Jw) = )V Iw) + 59w

— J(w) - %me)ua

This inequality tells us that this local change to w will decrease the objective
value as long as the gradient at w is non-zero. It turns out that if the function
J is convex (in addition to S-smooth), then repeatedly making such local
changes is sufficient to approximately minimize the function.
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2.2 Analysis for smooth convex objectives

One of the simplest ways to mathematically analyze the behavior of gradient
descent on smooth functions (with step size n = 1//) is to monitor the
change in a “potential function” during the execution of gradient descent.
The potential function we will use is the squared Euclidean distance to a fixed
vector w* € R?, which could be a minimizer of .J (but need not be):

1
P(w) = —||w — w*||3.
() = -l = '
The scaling by % is used just for notational convenience.
Let us examine the “drop” in the potential when we change a point w to
w + §*(w) (as in gradient descent):

* 1 * 1 * *
O(w) = ®(w + 0" (w)) = %Hw—w I3 = - llw + 6% (w) — w3

2n
B 0 = & (o - B + 26w (w - ) + 5 @) B)
= 8 (w) (" —w) — 55" (w)

=V (w) (w0 — w*) — %uwwua

In the last step, we have plugged in §*(w) = —%Vj(w). Now we use two key
facts. The first is the inequality we derived above based on the smoothness of
J:
N 1
J(w+06"(w)) < J(w) — %HVJ(%U)H%,

which rearranges to
—%HVJ(UJ)H% > J(w + 6" (w)) = J(w).
The second comes from the first-order definition of convexity:
J(w*) > J(w) + VJ(w)" (w* —w),
which rearranges to
VJ(w) (w—w*) > J(w) — J(w).
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So, we can bound the drop in potential as follows:

O(w) = &(w + " (w)) = VJ(w) (w — w") — %HVJ(%U)H%
> (J(w) = J(w?)) + (J(w + 0" (w)) = J(w))

= J(w+0"(w)) = J(w").

Let us write this inequality in terms of the iterates of gradient descent with
n=1/p:
O(w! V) — d(w?) > J(w?) — J(w).

Summing this inequality from ¢t =1,2,...,T"

ET: (cp(w(t—l)) _ @(w(t))> > ET: (J(w(t)) _ J(w*)) .

t=1 t=

The left-hand side snnphﬁes to ®(w®)—d(w™). Furthermore, since J(w®) >
J(w™)) for all t = 1,..., T, the right-hand side can be bounded from below
by

T (J(w<T>) - J(w*)) .

So we are left with the inequality

1
T ™)) < 7 () — e(uw®)) = - (Ju® — w3 - o —w])

3 Gradient descent on non-smooth objectives

Gradient descent can also be used for non-smooth convex functions as long as
the function itself does not change too quickly.

We say that a differentiable function J: RY — R is L-Lipschitz if its
gradient at any point in R? is bounded in Euclidean norm by L.

The motivation for gradient descent based on minimizing quadratic upper-
bounds no longer applies. Indeed, the gradient at w could be very different
from the gradient at a nearby w’, so the function value at w — nVJ(w) could
be worse than the function value at w. Therefore, we cannot expect to have
the same convergence guarantee for non-smooth functions that we had for
smooth functions.

Gradient descent, nevertheless, will produce a sequence wV, w®, ... such
that the function value at these points is approximately minimal “on average”.

1)
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3.1 Motivation

A basic motivation for gradient descent for convex functions, that does not
assume smoothness, comes from the first-order condition for convexity:

J(w*) > J(w) + VJ(w) (w* —w),
which rearranges to
(=VJ(w))" (0" —w) = J(w) = J(w").

Suppose J(w) > J(w*), so that moving from w to w* would improve the
function value. Then, the inequality implies that the negative gradient
—VJ(w) at w makes a positive inner product with the direction from w to
w*. This is the crucial property that makes gradient descent work.

3.2 Analysis

We again monitor the change in the potential function

B(w) = [lw — w3
2n

for a fixed vector w* € RY.
Again, let us examine the “drop” in the potential when we change a point
w to w —nVJ(w) (as in gradient descent):

]' * 1 *
O(w) — ®(w —nVJ(w)) = %Hw —w'f3 — %Hw —nVJ(w) — w3

= (=VJ())"(w = w*) = 2|V (w)}
L?n
-
where the inequality uses the convexity and Lipschitzness of J. In terms of
the iterates of gradient descent, this reads

> J(w) — J(w*)

(t=1) ) (t=1) o L
O(w' ) — d(w') > J(w )—J(w)—T.
Summing this inequality from ¢t =1,2,...,T"
L*nT
o(w ) — d(w®) > <J =1y _ g *)— .
() = @(w™) >3 " (J(w!V) = J(w*) i

t=1
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Rearranging and dividing through by 7' (and dropping a term):

T
1 - lw® — w3 L*n
L (t—1)y _ *> < 2 .
7 (=) = J(w)) < Tt

The left-hand side is the average sub-optimality relative to J(w*). Therefore,
there exists some t* € {0,1,...,7 — 1} such that

T
. 1 me) —w*||3  L%p
T(w®) - ( *)< 2 .
) =) £ 3 () o)) < R

The right-hand side is O(1/v/T) when we choose = 1/v/T.
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