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1 Smooth functions

Smooth functions are functions whose derivatives (gradients) do not change too
quickly. The change in the derivative is the second-derivative, so smoothness
is a constraint on the second-derivatives of a function.

We say a twice-differentiable function J : Rd → R is β-smooth if the
eigenvalues of its Hessian matrix at any point in Rd are at most β.

A consequence of β-smoothness is the following. Recall that by Taylor’s
theorem, for any w, δ ∈ Rd, there exists w̃ ∈ Rd on the line segment between
w and w + δ such that

J(w + δ) = J(w) +∇J(w)Tδ +
1

2
δT∇2J(w̃)δ.

If J is β-smooth, then we can bound the third term from above as

1

2
δT∇2J(w̃)δ ≤ 1

2
∥δ∥2 max

u∈Rd:∥u∥=1
uT∇2J(w̃)u

≤ 1

2
∥δ∥2λmax(∇2J(w̃))

≤ 1

2
∥δ∥2β.

Therefore, if J is β-smooth, then for any w, δ ∈ Rd,

J(w + δ) ≤ J(w) +∇J(w)Tδ +
β

2
∥δ∥2.
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2 Gradient descent on smooth objectives

Gradient descent starts with an initial point w(0) ∈ Rd, and for a given step

size η, iteratively computes a sequence of points w(1), w(2), . . . as follows. For
t = 1, 2, . . . :

w(t) = w(t−1) − η∇J(w(t−1)).

2.1 Motivation

The motivation for the gradient descent update is the following. Suppose we
have a current point w ∈ Rd, and we would like to locally change it from w
to w + δ so as to decrease the objective value. How should we choose δ?

In gradient descent, we consider the quadratic upper-bound that smooth-
ness grants, i.e.,

J(w + δ) ≤ J(w) +∇J(w)Tδ +
β

2
∥δ∥22,

and then choose δ to minimize this upper-bound. The upper-bound is a
convex quadratic function of δ, so its minimizer can be written in closed-form.
The minimizer is the value of δ such that

∇J(w) + βδ = 0.

In other words, it is δ⋆(w), defined by

δ⋆(w) = −1

β
∇J(w).

Plugging in δ⋆(w) for δ in the quadratic upper-bound gives

J(w + δ⋆(w)) ≤ J(w) +∇J(w)Tδ⋆(w) +
β

2
∥δ⋆(w)∥22

= J(w)− 1

β
∇J(w)T∇J(w) +

1

2β
∥∇J(w)∥22

= J(w)− 1

2β
∥∇J(w)∥22.

This inequality tells us that this local change to w will decrease the objective
value as long as the gradient at w is non-zero. It turns out that if the function
J is convex (in addition to β-smooth), then repeatedly making such local
changes is sufficient to approximately minimize the function.
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2.2 Analysis for smooth convex objectives

One of the simplest ways to mathematically analyze the behavior of gradient
descent on smooth functions (with step size η = 1/β) is to monitor the
change in a “potential function” during the execution of gradient descent.
The potential function we will use is the squared Euclidean distance to a fixed
vector w⋆ ∈ Rd, which could be a minimizer of J (but need not be):

Φ(w) =
1

2η
∥w − w⋆∥22.

The scaling by 1
2η is used just for notational convenience.

Let us examine the “drop” in the potential when we change a point w to
w + δ⋆(w) (as in gradient descent):

Φ(w)− Φ(w + δ⋆(w)) =
1

2η
∥w − w⋆∥22 −

1

2η
∥w + δ⋆(w)− w⋆∥22

=
β

2
∥w − w⋆∥22 −

β

2

(
∥w − w⋆∥22 + 2δ⋆(w)T(w − w⋆) + ∥δ⋆(w)∥22

)
= −βδ⋆(w)T(w⋆ − w)− β

2
∥δ⋆(w)∥22

= ∇J(w)T(w − w⋆)− 1

2β
∥∇J(w)∥22.

In the last step, we have plugged in δ⋆(w) = − 1
β∇J(w). Now we use two key

facts. The first is the inequality we derived above based on the smoothness of
J :

J(w + δ⋆(w)) ≤ J(w)− 1

2β
∥∇J(w)∥22,

which rearranges to

− 1

2β
∥∇J(w)∥22 ≥ J(w + δ⋆(w))− J(w).

The second comes from the first-order definition of convexity:

J(w⋆) ≥ J(w) +∇J(w)T(w⋆ − w),

which rearranges to

∇J(w)T(w − w⋆) ≥ J(w)− J(w⋆).
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So, we can bound the drop in potential as follows:

Φ(w)− Φ(w + δ⋆(w)) = ∇J(w)T(w − w⋆)− 1

2β
∥∇J(w)∥22

≥ (J(w)− J(w⋆)) + (J(w + δ⋆(w))− J(w))

= J(w + δ⋆(w))− J(w⋆).

Let us write this inequality in terms of the iterates of gradient descent with
η = 1/β:

Φ(w(t−1))− Φ(w(t)) ≥ J(w(t))− J(w⋆).

Summing this inequality from t = 1, 2, . . . , T :

T∑
t=1

(
Φ(w(t−1))− Φ(w(t))

)
≥

T∑
t=1

(
J(w(t))− J(w⋆)

)
.

The left-hand side simplifies to Φ(w(0))−Φ(w(T )). Furthermore, since J(w(t)) ≥
J(w(T )) for all t = 1, . . . , T , the right-hand side can be bounded from below
by

T
(
J(w(T ))− J(w⋆)

)
.

So we are left with the inequality

J(w(T ))−J(w⋆) ≤ 1

T

(
Φ(w(0))− Φ(w(T ))

)
=

β

2T

(
∥w(0) − w⋆∥22 − ∥w(T ) − w⋆∥22

)
.

3 Gradient descent on non-smooth objectives

Gradient descent can also be used for non-smooth convex functions as long as
the function itself does not change too quickly.

We say that a differentiable function J : Rd → R is L-Lipschitz if its
gradient at any point in Rd is bounded in Euclidean norm by L.

The motivation for gradient descent based on minimizing quadratic upper-
bounds no longer applies. Indeed, the gradient at w could be very different
from the gradient at a nearby w′, so the function value at w − η∇J(w) could
be worse than the function value at w. Therefore, we cannot expect to have
the same convergence guarantee for non-smooth functions that we had for
smooth functions.

Gradient descent, nevertheless, will produce a sequence w(1), w(2), . . . such
that the function value at these points is approximately minimal “on average”.
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3.1 Motivation

A basic motivation for gradient descent for convex functions, that does not
assume smoothness, comes from the first-order condition for convexity:

J(w⋆) ≥ J(w) +∇J(w)T(w⋆ − w),

which rearranges to

(−∇J(w))T(w⋆ − w) ≥ J(w)− J(w⋆).

Suppose J(w) > J(w⋆), so that moving from w to w⋆ would improve the
function value. Then, the inequality implies that the negative gradient
−∇J(w) at w makes a positive inner product with the direction from w to
w⋆. This is the crucial property that makes gradient descent work.

3.2 Analysis

We again monitor the change in the potential function

Φ(w) =
1

2η
∥w − w⋆∥22,

for a fixed vector w⋆ ∈ Rd.
Again, let us examine the “drop” in the potential when we change a point

w to w − η∇J(w) (as in gradient descent):

Φ(w)− Φ(w − η∇J(w)) =
1

2η
∥w − w⋆∥22 −

1

2η
∥w − η∇J(w)− w⋆∥22

= (−∇J(w))T(w − w⋆)− η

2
∥∇J(w)∥22

≥ J(w)− J(w⋆)− L2η

2
,

where the inequality uses the convexity and Lipschitzness of J . In terms of
the iterates of gradient descent, this reads

Φ(w(t−1))− Φ(w(t)) ≥ J(w(t−1))− J(w⋆)− L2η

2
.

Summing this inequality from t = 1, 2, . . . , T :

Φ(w(0))− Φ(w(T )) ≥
T∑
t=1

(
J(w(t−1))− J(w⋆)

)
− L2ηT

2
.
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Rearranging and dividing through by T (and dropping a term):

1

T

T∑
t=1

(
J(w(t−1))− J(w⋆)

)
≤ ∥w(0) − w⋆∥22

2ηT
+

L2η

2
.

The left-hand side is the average sub-optimality relative to J(w⋆). Therefore,
there exists some t∗ ∈ {0, 1, . . . , T − 1} such that

J(w(t∗))− J(w⋆) ≤ 1

T

T∑
t=1

(
J(w(t−1))− J(w⋆)

)
≤ ∥w(0) − w⋆∥22

2ηT
+

L2η

2
.

The right-hand side is O(1/
√
T ) when we choose η = 1/

√
T .
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