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1 Basic facts

We say that the distribution of the pair of random variables X = (X7, X3) is
the bwariate normal distribution with 2-dimensional mean vector

n = (M,Na)

and 2 X 2 covariance matrix

if the density function for X is
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We also use the notation

(X17 XQ) ~ N(,u, E)

to declare that (X7, X3) has a bivariate normal distribution with mean g and
covariance Y. The covariance matrix Y is required to be positive definite,
which means that X' is symmetric (i.e., X' = X7), and v"Xv > 0 for all v # 0.

The contour lines of equal density value form concentric ellipses centered
at (1, p12); the density is highest at (u1, po), and it falls off quickly away from
(1, p2). See Figure [I](a).

Using the density function, we can compute the means and variances of
X1 and X5, as well as the covariance between X; and Xo:
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Figure 1: (a) Contour lines of bivariate normal density with py; = s = 0,
Y1 =259=10/9, and Xy 5 =2/3. (b) Contour lines of standard bivariate
normal density.

o (X)) =, var(X;) = X4

o E(X2) = pa, var(Xs) = X
o cov(Xy, Xo) =219 =29,

2 Where does bivariate normal distribution
come from?

If 7, and Z5 are independent random variables (defined on the same probability
space) and each is a standard normal random variable, then distribution of
7 = (44, Zs) is the standard bivariate normal, with density function given by
the product of the marginal density functions for Z; and Z5 (each being the
standard univariate normal density):
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The contours lines of equal density value form concentric circles centered
at the origin; the density is highest at origin, and it falls off quickly away
from origin. See Figure [1b).




Define X = (X3, X3) to be an affine transformation of Z as follows:

Xi=m + A2+ A2,
Xo = po + A1 21 + Az 97

for some real numbers p1, 2, A1 1, A1 2, A21, A22. In matrix form,

X=p+AZ
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Assume that A is invertible, so

where

Z=AYX —p).

Using the change-of-density rule and some simplifications, we find that the
probability density function for X is given by

px(z) = det(A™) - pz(A~ (& — p))
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where Y) = AAT. This is generically the form of the density function of a
bivariate normal distribution, since any positive definite matrix X' can be
written as AAT for some invertible matrix A.

Upshot: Every (X7, X) that has a bivariate normal distribution is, in fact,
an affine transformation of independent standard normal random variables
Zh, Zo.

All of this naturally generalizes to d-variate normal distributions, for all
integers d > 1.
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