Calibration and bias

COMS 4771 Fall 2025

Predicting conditional probabilities

Example #1: Click prediction for online ads

- ightharpoonup X =features of (user, advertisement) pair
- $ightharpoonup Y = ext{indicator that user will click on ad}$
- $ightharpoonup \Pr(Y=1\mid X=x)$ is almost always near zero, but useful to know this probability, e.g., to compare ads, estimate revenue

Example #2: Selective prediction

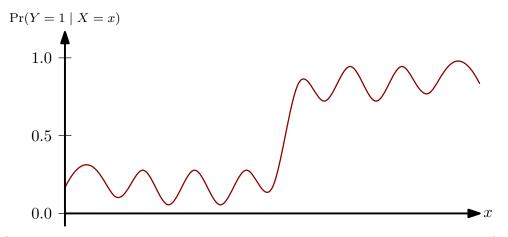
▶ If $Pr(Y = 1 \mid X = x) \approx Pr(Y = 0 \mid X = x)$, then perhaps should abstain from making a prediction

 Iogistic regression
 ✓

 Perceptron
 no

Caution:

- Prediction/estimate of (conditional) probability is still a prediction
 - Some are accurate, some are inaccurate
 - ► Same goes for anything derived from these predictions
- ► At least as hard as learning to classify, and can be arbitrarily harder



(Please imagine a high-dimensional version of this picture)

3/30

Ultimately, need to validate accuracy of predictions of (conditional) probabilities

▶ Indirect measures: logarithmic loss (a.k.a. cross entropy loss), squared error,

▶ Recall: for binary classification, function $\hat{p} \colon \mathcal{X} \to [0,1]$ that minimizes $\mathbb{E}[\operatorname{loss}_{\log}(\hat{p}(X),Y)]$ is

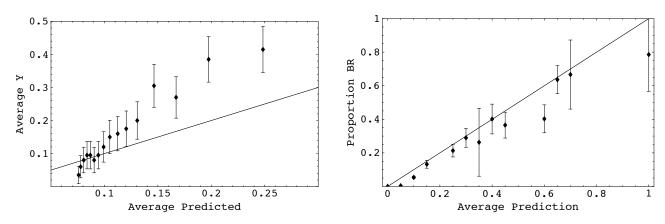
$$\hat{p}(x) = \Pr(Y = 1 \mid X = x)$$

(where $loss_{log}$ is logarithmic loss)

- Average case measure of the quality of predictions
- But how accurate is any individual prediction?

Calibration

Prediction $\hat{p}(x)$ of $\Pr(Y=1\mid X=x)$ is <u>(approximately) calibrated</u> if $\Pr(Y=1\mid \hat{p}(X)=p)\approx p\quad\text{for all }p\in[0,1]$



(Foster & Stine, 2004, "Building a Predictive Model for Bankruptcy")

6/30

Expected calibration error of \hat{p} (assuming range(\hat{p}) is finite set $\mathcal{P} \subset [0,1]$):

$$\sum_{p \in \mathcal{P}} |\Pr(Y = 1 \land \hat{p}(X) = p) - p \times \Pr(\hat{p}(X) = p)|$$

Possible to estimate this from test data if \mathcal{P} is not too large:

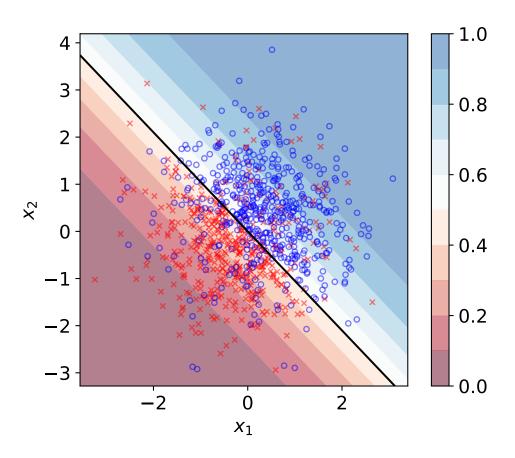
$$\sum_{p \in \mathcal{P}} \frac{1}{n} \left| \sum_{i=1}^{n} \mathbb{1} \{ y^{(i)} = 1 \land \hat{p}(x^{(i)}) = p \} - p \sum_{i=1}^{n} \mathbb{1} \{ \hat{p}(x^{(i)}) = p \} \right|$$

Synthetic example: $X=(X_1,X_2)\sim \mathrm{N}(0,I)$, and

$$\Pr(Y = 1 \mid X = x) = p^{\star}(x) = \begin{cases} 0.8 & \text{if } x_1 + x_2 > 0 \\ 0.2 & \text{otherwise} \end{cases}$$

Fit logistic regression model to $1000\ \mathrm{training}$ examples using MLE

- ightharpoonup Error rate is 20.3%, which is nearly optimal
- ▶ However, expected calibration error of \hat{p} is 0.13



Calibrating conditional probability predictions

Suppose you have real-valued "score" function $s\colon \mathbb{R}^d \to \mathbb{R}$

	Possible score $s(x)$
k-nearest neighbors	
decision trees	
generative models	est. of $Pr(Y = 1 \mid X = x)$
logistic regression	est. of $Pr(Y = 1 \mid X = x)$
Perceptron	
	/

(many other possibilities)

Goal: obtain approximately calibrated predictor $\hat{p}(x)$ of $\Pr(Y = 1 \mid X = x)$

(Histogram) binning:

- ightharpoonup Sort s(x) from training/validation data into T bins
- ▶ Determine T-1 boundary values between the bins
- ▶ Let $\hat{p}^{(i)}$ be estimate of $Pr(Y = 1 \mid s(x) \in \text{bin } i)$
- ► Then define

$$\hat{p}(x) = \begin{cases} \hat{p}^{(1)} & \text{if } s(x) \text{ falls in bin } 1\\ \hat{p}^{(2)} & \text{if } s(x) \text{ falls in bin } 2\\ \vdots & & \\ \hat{p}^{(T)} & \text{if } s(x) \text{ falls in bin } T \end{cases}$$

11/30

How can this possibly work?

- ▶ Key idea: score function turns problem into one with only a single feature
- ▶ No curse of dimension to worry about

Synthetic example: $X=(X_1,X_2)\sim \mathrm{N}(0,I)$, and

$$\Pr(Y = 1 \mid X = x) = p^{\star}(x) = \begin{cases} 0.8 & \text{if } x_1 + x_2 > 0 \\ 0.2 & \text{otherwise} \end{cases}$$

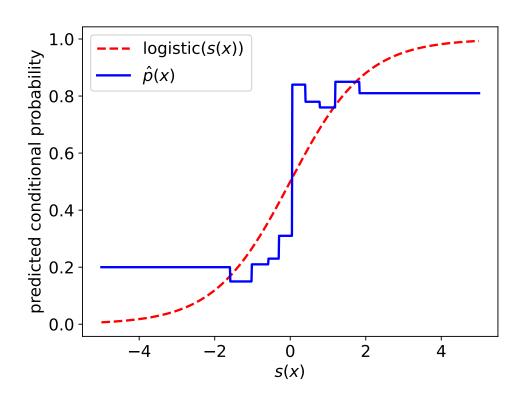
Fit logistic regression model to $1000\ \mathrm{training}$ examples using MLE

- ▶ Apply binning to $s(x) = \hat{w}^{\mathsf{T}}x$ (with T = 10 bins)
- \blacktriangleright Expected calibration error: 0.043 (down from 0.13)

13 / 30

Final predictor $\hat{p}(x)$:

range of $s(x)$	$\hat{p}(x)$
s(x) < -1.591	0.200
$-1.591 \le s(x) < -1.024$	0.150
$-1.024 \le s(x) < -0.578$	0.210
$-0.578 \le s(x) < -0.296$	0.230
$-0.296 \le s(x) < 0.055$	0.310
$0.055 \le s(x) < 0.398$	0.840
$0.398 \le s(x) < 0.777$	0.780
$0.777 \le s(x) < 1.194$	0.760
$1.194 \le s(x) < 1.835$	0.850
$1.835 \le s(x)$	0.810



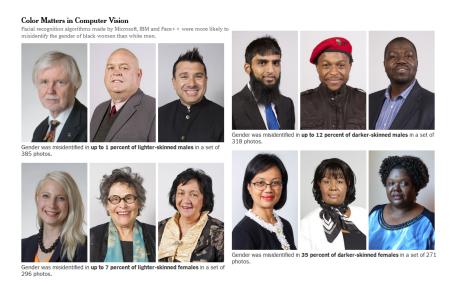
- ▶ Popular way to improve binning: enforce monotonicity (e.g., if you believe $Pr(Y = 1 \mid s(x))$ is monotone in s(x))
- \blacktriangleright Caution: a \hat{p} with low expected calibration error does not necessarily give an accurate predict of Y from X
 - lackbox Only gives an accurate predictor of Y from s(X)
 - ▶ But perhaps s(X) is constant!
 - \blacktriangleright In this case, suffices to predict the constant $\Pr(Y=1)$

Calibration versus equalizing error rates

- ▶ Increasing use of predictive models in real-world applications (e.g., admissions, hiring, criminal justice)
- ▶ Do they offer "fair treatment" to individuals/groups?

Well-known example: "Gender shades" study (Buolamwini and Gebru, 2018)

- ► Task: predict gender from image of face
- ▶ Major finding: some commercial facial analysis software were less accurate for images of darker-skinned female individuals than for images of lighter-skinned male individuals



18 / 30

ProPublica "Machine Bias" study (Angwin et al, 2016)

- ▶ Judge needs to decide whether or not an arrested defendant should be released while awaiting trial
- ► Predictive model ("COMPAS") predicts whether or not defendant will commit (violent) crime if released
- Study based data from Broward County, Florida argued that COMPAS treated black defendants unfairly in a certain sense

Setup for ProPublica study (highly simplified)

- ► X: feature vector specific to arrested defendant
- ightharpoonup A: group membership attribute (e.g., race, sex, age; could be part of X)
- ightharpoonup Y: outcome to predict (e.g., "will re-offend if released")
- $ightharpoonup \hat{Y} = f_{\text{COMPAS}}(X)$: prediction of Y based on X
- For simplicity, assume A,Y,\hat{Y} are all $\{0,1\}$ -valued

20 / 30

Types of errors:

- ► False positive rate: $FPR = Pr(\hat{Y} = 1 \mid Y = 0)$
- ► False negative rate: $FNR = Pr(\hat{Y} = 0 \mid Y = 1)$
- lacktriangle Per-group FPR and FNR: for each $a\in\{0,1\}$,

$$FPR_a = Pr(\hat{Y} = 1 \mid Y = 0, A = a)$$

$$FNR_a = Pr(\hat{Y} = 0 \mid Y = 1, A = a)$$

Equalized odds: require that $FPR_0 \approx FPR_1$ and $FNR_0 \approx FNR_1$

▶ No group incurs errors (either type) at a higher rate than the other

ProPublica found: COMPAS software is very far from offering "equalized odds"

- ► $FPR_0 = 45\%$, $FPR_1 = 23\%$
- ► $FNR_0 = 27\%$, $FNR_1 = 48\%$

22 / 30

Response from Northpointe (creator of COMPAS)

- ▶ $f_{\text{COMPAS}}(x) = \mathbb{1}\{\hat{p}(x) > t\}$ where $\hat{p}(x)$ is prediction of $\Pr(Y = 1 \mid X = x)$, and t is some suitable threshold parameter
- ightharpoonup \hat{p} approximately-calibrated, and also approximately-calibrated for each group

$$\Pr(Y = 1 \mid \hat{p}(X) = p, A = 0) \approx \Pr(Y = 1 \mid \hat{p}(X) = p, A = 1) \approx p$$

lackbox So \hat{p} has same probabilistic semantics for each group

Theorem (Chouldechova; Kleinberg-Mullainathan-Raghavan): Unless

$$Pr(Y = 1 \mid A = 0) = Pr(Y = 1 \mid A = 1)$$
 or $FPR_0 = FPR_1 = FNR_0 = FNR_1 = 0$,

it is impossible to simultaneously satisfy all of the following:

- 1. $FPR_0 = FPR_1$
- 2. $FNR_0 = FNR_1$
- 3. \hat{Y} is marginally calibrated for group A=0
- 4. \hat{Y} is marginally calibrated for group A=1

(Marginal calibration for group a: $\Pr(\hat{Y} = 1 \mid A = a) = \Pr(Y = 1 \mid A = a)$)

Distribution shift

Distribution shift (a.k.a. train/test mismatch, sample selection bias):

- ► Training data is sample from source distribution
- ► Care about (average) performance on data from target distribution
- ▶ Distribution shift: source \neq target

Example: care about applying facial analysis software to images from general US population, but only train on images of light-skinned males

- ► Hardly any reason to expect things to work well . . .
- ...unless you are "testing" only on images of light-skinned males

In many applications, training data is "dataset of convenience"

► Use whatever data you can get

All methods for addressing distribution shift require

- ► Either a lot of domain knowledge,
- Or additional data from target distribution
- ► (Often need both)

27 / 30

Example: re-weighting data

► Suppose you notice that, in training data,

$$\Pr(A=0) \ll \Pr(A=1)$$

But you know that in target distribution, A=0 and A=1 equally often

► Use an importance weight of

$$\frac{1}{2\Pr(A=a)}$$

for every example with A=a in (empirical) expectation computations

Critical assumption: conditional distribution of (X,Y) given A is the same in source and target; only marginal distribution of A differs

Importance-weighted test error rate

- ► Test data $(\tilde{X}^{(1)}, \tilde{Y}^{(1)}, \tilde{A}^{(1)}), \dots, (\tilde{X}^{(m)}, \tilde{Y}^{(m)}, \tilde{A}^{(m)}) \stackrel{\text{i.i.d.}}{\sim} (X, Y, A)$, from source distribution
- ▶ Define $p_a = \Pr(A = a)$ for each $a \in \{0, 1\}$
- ► Weighted test error rate:

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{f(\tilde{X}^{(i)}) \neq \tilde{Y}^{(i)}\} \times \frac{1}{2p_{\tilde{A}^{(i)}}}$$

29 / 30

Expected value of importance-weighted test error rate:

$$\mathbb{E}\left[\mathbb{1}\{f(X) \neq Y\} \times \frac{1}{2p_A}\right] =$$