COMS 4771 Machine Learning Fall 2025

Homework 2

Model selection

The wine dataset collects various features of Italian wines from three different wineries. The
details of the dataset (including the features) are given here: https://archive.ics.uci.
edu/dataset/109/wine. We have split the dataset into training data and test data, available
in the file wine.pkl. You can load the dataset as follows.

import pickle
wine = pickle.load(open('wine.pkl', 'rb'))

The format of the resulting dictionary object wine is similar to that of the MNIST dataset.
Note that the possible labels are) = {0, 1,2} instead of {1,2,3}.

Problem 1. Suppose you would like to find a classifier (to minimize the usual error rate)
based on the normal generative model for the wine dataset, but you would like it to only use
at most two features. (Why? It may be expensive to obtain the feature values for different
wines, so it is desirable to use as few features as possible.) You should do this using some
form of cross validation; you may use any reasonable approach you like.

(a) Describe your approach in sufficient detail so that another student would be able to
reproduce your results. Give all relevant numerical results from the process (e.g., how
you split the training data, validation error rates for the various models you try).

(b) Describe in detail the final classifier you obtain (e.g., which features were used,
parameters of the model). Report the training and test error rates of this final
classifier.

https://archive.ics.uci.edu/dataset/109/wine
https://archive.ics.uci.edu/dataset/109/wine

COMS 4771 (Fall 2025) Homework 2 2

Optimal classifiers

Suppose (X,Y) is a random example, with range(X) = [0, 1] and range(Y) = {0,1}. The
distribution of (X,Y") is as follows. The marginal distribution of X is the uniform probability
density on the interval [0, 1]. For any x € [0, 1], the conditional probability that Y =1 given
X =uxis

0.25 ifz<0.2
Pr(Y =1|X=2)={06 if02<z<0.8,
0.3 ifz>08.

For any classifier f: [0,1] — {0,1}, let err[f] = Pr(f(X) # Y') denote its error rate. Let f*
denote an optimal classifier (i.e., a classifier with minimum error rate).

Problem 2.
(a) Compute the exact value of err[f*]. Show a brief derivation of your answer.

(b) When the input space X is (a subset of) R, a decision stump is a decision tree that
has the form:

“if x <'t, then return a, else return b.”

Above, z is the input (a scalar variable), and the parameters of the decision stump
aret € R, a € {0,1}, and b € {0,1}.

Write a Python function that, given (the parameters of) such a decision stump 7,
returns its error rate err[fr]. (Here, fr refers to the function implemented by the
decision stump 7.) Use your code to determine the error rates of the following three
decision stumps:

T, = “if x < 0.4, then return 0, else return 17;
T, = “if x < 0.5, then return 0, else return 17;

Ty = “if x < 0.5, then return 1, else return 0”.

Your procedure should compute the error rates exactly (up to numerical precision). It
should not simply estimate it using a finite number of randomly generated examples.

(c) For each t € R, let e(t) denote the smallest error rate achievable by a decision stump
that uses the predicate “z < ¢?” with its non-leaf node[] Plot e(t) as a function of ¢ in
the range —0.2 <t < 1.2. Make sure the axes of your plot are appropriately labeled.

What is the threshold parameter ¢ of the decision stump 7" that has the smallest error
rate err[fr] among all decision stumps? And what is its (exact) error rate?

(d) Write a Python function that, given training dataset (z1,v1),. .., (s, yn) from [0, 1] x
{0, 1}, returns (the parameters of) a decision stump that the smallest possible error
rate on the training dataset, along with its training error rate. Apply this function to
the following dataset (with n = 17 examples):

COMS 4771 (Fall 2025) Homework 2 3

at‘().l 0.15 02 025 03 035 04 045 05 055 0.6 065 07 0.75 08 0.85

0.9

y‘O 1 0 0 0 1 0 0 0 1 0 0 0 0 1

What is the decision stump you obtain, and what is its training error rate? (Please
report three significant digits for the error rate.)

Hint: You don’t need to worry about getting the fastest possible runtime with your
implementation, but you will need to use it in the next part many times (see below),
so it shouldn’t be too slow either.

Now let us consider what decision stump might be selected by a learning algorithm
that does not know the distribution of (X,Y’), but instead only has a finite sample.

Let T be a decision stump with the smallest number of classification mistakes on
the training examples (X1, Y1), (X2, Y2), ..., (X100, Yi00) ~iia.(X,Y). Let ¢t denote the

~

threshold in the predicate used by the decision stump 7. Let err[f7] denote the error
rate of 7. Use Python to simulate the random generation of the 100 training examples,
the construction of 7 , and the computation of err[fz]. Some Python code for carrying
this out will be provided, but you will need to use your Python functions from previous
parts.

Run the simulation 5000 times, recording the values of ¢ and err| fz]. Plot two
histograms: one for ¢, and another for err[fz]. Make sure the axes of your histograms
are appropriately labeled.

(Continuing from Part (e).) Examine the histograms for ¢ and err[fz]. In each
histogram, if you squint a bit, you should observe a few “peaks” (of varying heights).

— What is the relationship between the peaks across the two histograms? Please
note the (approximate) “locations” of the peaks.

— Why do you think these peaks occur? Try your best to give a well-thought-out
explanation, but it is not necessary to be completely rigorous.

Hint: You may also want to refer back to the plot of e(t) from Part (c).

%There is a question as to whether decision stumps are allowed to have the same label at both leaf
nodes. A decision stump where the leaf nodes have the same label is a constant function—the predicate is
irrelevant. If such decision stumps are allowed, then e(t) is never larger than the error rate of the “best”
constant function. Please state whether or not you are allowing such decision stumps. (Either is fine, but
your choice will affect e(t) and what its plot looks like.)

1

1

COMS 4771 (Fall 2025) Homework 2 4

Linear regression

The prostate cancer dataset records prostate-specific antigen (PSA) levels and several other
clinical measurements in cancer patients. The dataset is described in Elements of Statistical
Learning by Hastie, Tibshirani, and Friedman. You can load the dataset as follows.

import pickle

prostate = pickle.load(open('prostate.pkl', 'rb'))

The resulting dictionary object prostate has three keys: 'names' maps to a list of the variable
names, 'data' maps to the training data, and 'testdata' maps to the test data. (The test
data will not be used in this homework.) The problem associated with this dataset is to
predict the 1psa (logarithm of the PSA level) variable by a function of the other variables.
Note that 1psa is the last “column” of prostate['data'] (and of prostate['testdata']).

Problem 3.

(a) For each of the eight features, use the training data to find the best fit affine function
of that single variable to the label 1psa. (By “best”, we mean of minimum sum of
squared errors.) Report the slope and intercept in each case.

(b) Use the training data to find the best fit affine function of all eight features (together
as a vector in R®) to the label 1psa. Report the coefficients in the weight vector and
the intercept term.

Please report three significant digits for each slope/coefficient /intercept.

You should find that some of the variables have a negative coefficient in the weight vector
from Problem [3|(b), even though its corresponding affine function from Problem [3|(a) has
a positive slope. This might seem like a paradox: for such a feature, your answers from
Problem (a) might lead you to think that increasing the feature’s value should, on average,
increase the (predicted) value of 1psa; whereas your answer from Problem [3(b) might lead
you to think that increasing the feature’s value should, on average, decrease the (predicted)
value of lpsa.

Of course, there is no paradox. The following problem shows how this can happen.

Problem 4. Suppose the random vector X = (X7, X5) follows a bivariate normal distribu-
tion, with mean zero and covariance matrix

o]

(which means var(X;) = var(X,) = 1, and cov(X, Xs) = 2/3), and define the random

variable Y by
Y = §X — §X
I
(a) What is the affine function of X that has smallest mean squared error for predicting

Y? Give the slope and intercept, and show a short derivation.

https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/ElemStatLearn/

COMS 4771 (Fall 2025) Homework 2 5

Hint: Use the normal equations but replace “averages” computed over training data
by “expectations” with respect to the distribution of (X,Y).

(b) What is the affine function of X, that has smallest mean squared error for predicting
Y? Again, give the slope and intercept, and show a short derivation.

(c) And finally, what is the affine function of (X3, X;) that has smallest mean squared error
for predicting Y7 Give the weight vector and intercept, and show a short derivation.

You should find that even though each of X; and X5 is positively correlated with Y
(analogous to the situation in Problem [3{(a)), the best affine predictor of ¥ that considers
both X; and X, has a positive coefficient for one variable and a negative coefficient for the
other variable (analogous to the situation in Problem [3|(b)). This example shows that one
must be careful when interpreting the sign of the regression coefficient.

COMS 4771 (Fall 2025) Homework 2 6

Freedman’s paradox

Load the training dataset freedman.pkl as follows:

import pickle
freedman = pickle.load(open('freedman.pkl', 'rb'))

In freedman['data'], there is an n X d matrix whose rows correspond to n feature vectors
M, 2™ € RY In freedman['labels'], we have the corresponding labels yM, ... y™ €
R. Features and labels are approzimately standardized (i.e., mean zero and variance one).

Suppose we are interested in predicting the label from the feature vectors using a (homo-
geneous) linear function. Note that n = 100 and d = 1000, so we don’t expect ordinary least
squares to work well on this dataset. But we might hope that ordinary least squares will
work well if we only consider a small number of features. So consider the following three-step
procedure:

e (Step 1.) Estimate the correlations between the features and the label:
R I~ o) g :
ij—EZIJ?j Yy for j=1,...,d

(This is a reasonable estimate since the features and labels are approximately standard-
ized.)

e (Step 2.) Let J be the set of features (well, technically the indices of these features) for
which the estimated correlation is larger than 2/y/n:

J={je{l,....d}:|p| >2/vn}.

e (Step 3.) Now construct the ordinary least squares estimate @ € R? using only features
in J. In other words,

A . 1O : :
we argmin — g (wz® —)2,
weR? such that ATL i=1
wj =0 forallj¢&J

This is equivalent to removing the columns of freedman['data'] that are not in J, , and
then applying ordinary least squares with the resulting dataset.

The first two steps comprise a “screening procedure” whose purpose is to remove irrelevant
features. If the number of features |J| remaining after the screening is much smaller than n,

then one might think that ordinary least squares (using only features in J) will work well;
this is the motivation for Step 3.

Problem 5.

(a) Carry-out the procedure described above on the given training data. How many
features are in J after Step 27 It should be much smaller than n.

COMS 4771 (Fall 2025) Homework 2 7

(b) What is the empirical risk of w after Step 3, i.e.,
1 - AT (%) (1)\29
EZ(IU ' — y\)
i=1

It should be much smaller than the variance of the labels on this dataset (which is
close to 1).

(c) A separate test set is available in freedman['testdata'], freedman['testlabels']
What is the risk of @ on this test set? (This can be regarded as “test risk” of w.)

(d) It turns out that all features and labels are drawn independently from N(0,1)—i.e.,
there is no real correlation between the features and labels. Yet, based on the relatively
small empirical risk of w, together with the small number of features used in w relative
to the sample size n, one might have thought that there is a relationship between the
features and labels! This apparent paradox is called “Freedman’s paradox”. Briefly
explain why this happens.

Optional: What is the “true” risk of w? The answer can be expressed as a certain
function of w.

(e) Suppose Step 3 was modified to use an independent and identically distributed dataset
(instead of the same dataset used in Steps 1 and 2). In fact, freedman['data2'] and
freedman['labels2'] can be used for this purpose. So 7 is determined using the first
dataset, but w is now obtained using the second dataset. Do you think the empirical
risk (on the second dataset) of the resulting weight vector @ will be higher or lower
than the answer from Part (b)? Please explain your answer. (Try to come up with an
answer and explanation before trying it out using the data.)

Solutions

https://drive.google.com/file/d/1eureI0C0lwZnj_1BdQqv4qmBZTZkIfNF/view?usp=drive_
link

https://drive.google.com/file/d/1eureI0COlwZnj_1BdQqv4qmBZTZk9fNF/view?usp=drive_link
https://drive.google.com/file/d/1eureI0COlwZnj_1BdQqv4qmBZTZk9fNF/view?usp=drive_link

