COMS 4771 Practice Problems

Last updated: 2019-10-04 17:36:38-04:00

These practice problems are for practice only; they are not to be submitted. Please feel free to discuss on Piazza, in office hours, etc.

We will not be posting solutions.

Contents

1 Homework 0 review 2
 1.1 Question 6 - Symmetric matrix 2
 1.2 Sum of independent Gaussian 2

2 Probability 2
 2.1 Markov 2
 2.2 MLE 3
 2.3 MLE 3
 2.4 Bayes Optimal Classification 3

3 Decision trees 3
 3.1 Binary trees 3
 3.2 Build your tree 3

4 Linear algebra 4
 4.1 Linear Algebra in Linear Regression 4
 4.2 Distance optimization 4

5 Nearest Neighbor 4
 5.1 Convexity of nearest neighbor regions 4

6 Linear regression 5
 6.1 Heteroskedastic noise in linear regression 5
 6.1.1 Part (a) 5
 6.1.2 Part (b) 5
 6.2 Linear algebraic perspective 5
 6.2.1 Part (a) 5
 6.2.2 Part (b) 5
 6.2.3 Part (c) 5
 6.3 The least (Euclidean) norm solution 5

7 Linear algebra practice 6
 7.1 Gradients and derivatives 6
1 Homework 0 review

1.1 Question 6 - Symmetric matrix

Let \(g: \mathbb{R}^2 \to \mathbb{R} \) be the function defined by \(g(x) := \frac{1}{2} x^\top A x - b^\top x + c \) where

\[
A := \begin{bmatrix} 3 & 5 \\ 5 & 3 \end{bmatrix}, \quad b := \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \text{and} \quad c := 9.
\]

1. Compute the determinant of \(A \)

2. Without any calculations, show that the eigenvalues of \(A \) are real and of opposite sign.

3. Show that \(b^\top x = O_{x \to \infty}(||x||) \). See footnotes for \(O \) materials.

4. Show that \(g \) has neither a minimum nor a maximum

1.2 Sum of independent Gaussian

Let \(X \sim \mathcal{N}(0, 1) \) and \(Y \sim \mathcal{N}(0, 1) \) be two independent normal random variables

1. Show that \(X + Y \) is also a normal random variable

2 Probability

2.1 Markov

Show that:

1. For any (measurable) event \(A \), we have \(\Pr[A] = \mathbb{E}[1_{\{A\}}] \)

2. For any non-negative random variable \(X \), and any \(c > 0 \),

\[
\Pr[X \geq c] \leq \frac{\mathbb{E}[X]}{c}
\]

(Hint: compare the output of the function \(1_{\{X > c\}} \) with the outcome of \(X \).)

3. Let \(X_1, \ldots, X_n \in \{0, 1\} \) be the outcome of \(n \) coin flips drawn from \(\text{Bern}(p) \). We can estimate the value of \(p \) using the sample mean \(\sum X_i/n \). Use the previous result to show that

\[
\Pr \left[\left| \sum X_i/n - p \right| > \epsilon \right] \leq \frac{p(1-p)}{n\epsilon^2} \leq \frac{1}{4n\epsilon^2}
\]

(Hint: \(X > 0 \implies \Pr[X < c] = \Pr[X^2 < c^2] \))

2.2 MLE

Let \(X_1, \ldots, X_n \in \{1, 6\} \) be the outcomes of \(n \) i.i.d. rolls of a (potentially) weighted die, i.e., from \(\text{Categorical}(p_1, p_2, p_3, p_4, p_5, p_6) \). The probability of the observed rolls is

\[
\prod_{i=1}^{n} \sum_{j=1}^{6} 1[X_i = j] p_j
\]

where \(\sum p_i = 1 \). Show that the MLE estimator for \(p_j \) is the expected \(\#X_j/n \), i.e. the fraction of rolls with that face value. Hint: compute the log probability and make sure to enforce the \(\sum p_i = 1 \) condition (for example, with Lagrange multipliers) while maximizing.

1 If you want precision on \(O \) notations, you can check the Wikipedia page https://en.wikipedia.org/wiki/Big_O_notation

2 Paragraph 0.3 of https://people.eecs.berkeley.edu/~vazirani/algorithms/chap0.pdf also explain the link with algorithms complexity analysis.
2.3 MLE
Consider the probability density \(p(x) = 2\theta xe^{-x^2\theta} \) for \(x \geq 0 \) and \(p(x) = 0 \) for \(x < 0 \). Find the maximum likelihood estimator for \(\theta \) given an iid sample \((x_1, \ldots, x_n)\).

2.4 Bayes Optimal Classification
In classification, the loss function we usually want to minimize is the 0/1 loss:

\[l(f(x), y) = \mathbb{1}\{f(x) \neq y\} \]

where \(f(x), y \in \{0, 1\} \) (i.e., binary classification). In this problem we will consider the effect of using an asymmetric loss function:

\[l_{\alpha,\beta}(f(x), y) = \alpha \mathbb{1}\{f(x)=1, y=0\} + \beta \mathbb{1}\{f(x)=0, y=1\}. \]

Under this loss function, the two types of errors receive different weights, determined by \(\alpha, \beta > 0 \). Determine the Bayes optimal classifier, i.e., the classifier that achieves minimum risk assuming the distribution of the random example \((X,Y)\) is known, for the loss \(l_{\alpha,\beta} \) where \(\alpha, \beta > 0 \).

3 Decision trees
3.1 Binary trees
Suppose you have a decision tree where the splitting rule can have more than two possible output values, so that non-leaf nodes can have more than two children. Show how to convert it into a decision tree in which the splitting rules have only two possible output values.

3.2 Build your tree
We recall two measures of uncertainty \(M \in \{G, E\} \) for decision trees at node \(n \) where \(p_k \) is the proportion of examples reaching node \(n \) with label \(k \):

\[\text{Gini index at node } n: \quad G(n) = 1 - \sum_k p_k^2 \]
\[\text{Entropy at node } n: \quad E(n) = -\sum_k p_k \log p_k. \]

(1) \hspace{1cm} (2)

For one node \(n \) with children \(l_{\text{left}}, l_{\text{right}} \), we recall the overall uncertainty:

\[\sum_{l \in \{l_{\text{left}}, l_{\text{right}}\}} M(l) \cdot (# \text{training examples reaching } l) \]

1. Show that the Gini index rewrites: \(\sum_k p_k(1 - p_k) \)
2. Compute both measures for:
 (a) All the observations of figure [-figure]
 (b) The observations only with \(x > -1 \)
 (c) The observations only with \(x < 1 \)
3. Using only splits of the form \((x_1, x_2) \rightarrow \mathbb{1}\{x_i > c\} \) for \(c \in \mathbb{R} \), build 2 binary trees of height 1 that minimize the overall uncertainty (one using the Gini index, and one using the entropy).
4. Do you think using 2 other forms of splits instead, you can build a tree with less nodes?
4 Linear algebra

4.1 Linear Algebra in Linear Regression

Consider the a linear model $y = X\beta + \epsilon$, and the fitted values from linear regression $\hat{y} = X\hat{\beta} = X(X^TX)^{-1}X^Ty$. For simplicity, let’s assume ϵ_i’s are i.i.d. normal with 0 mean and σ^2 variance. Recall an alternative definition of the degrees of freedom:

$$df(\hat{f}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} \text{Cov}(y_i, \hat{y}_i)$$

What is the theoretical degrees of freedom for this linear regression?

Solution

Denote $H = X(X^TX)^{-1}X^T$, then $\hat{y} = Hy$. Now, $\text{cov}(\hat{y}, y) = \text{cov}(Hy, y) = H\text{cov}(y, y) = H(\sigma^2 I_{n\times n}) = \sigma^2 H$.

Thus, $df(\hat{f}) = \frac{1}{\sigma^2} \text{Trace}(\text{cov}(\hat{y}, y)) = \text{Trace}(H)$ where $H = X(X^TX)^{-1}X^T$.

4.2 Distance optimization

Given a point $p \in \mathbb{R}^d$ and a plane $D := \{x \in \mathbb{R}^d | w \cdot x = 0\}$ defined as the set of vectors orthogonal to a vector w, derive a formula for the minimum distance between p and any point on D.

5 Nearest Neighbor

5.1 Convexity of nearest neighbor regions

1. Given a collection of labeled examples $D := \{(x_i, y_i)\}_{i=1}^{n}$, and two unlabeled examples t_1, t_2, suppose that the t_1 and t_2 have the same nearest neighbor in D, d_1 (when using ℓ_2 norm). Prove that for any point lying on the line segment in between t_1 and t_2, that point’s nearest neighbor in D will also be d_1.

2. If t_1 and t_2’s nearest neighbors in D simply have the same training label (but may be different examples), must the nearest neighbor of every point on the line segment in between t_1 and t_2 have that training label as well?
6 Linear regression

6.1 Heteroskedastic noise in linear regression

6.1.1 Part (a)
Let P_{β} be a probability distribution on $\mathbb{R}^d \times \mathbb{R}$ for the random pair (X,Y) (where $X = (X_1, \ldots, X_d)$) such that $X_1, \ldots, X_d \sim i.i.d.$ $N(0,1)$, and $Y | X = x \sim N(x^T \beta, \|x\|_2^2)$, $x \in \mathbb{R}^d$.

Here, $\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{R}^d$ are the parameters of P_{β}.

True or false: The linear function with the smallest squared loss risk with respect to P_{β} is β.

Answer with "true" or "false", and briefly (but precisely) justify your answer.

6.1.2 Part (b)
Let $(x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}$ be given, and assume $x_i \neq 0$ for all $i = 1, \ldots, n$. Let f_{β} be the probability density function for P_{β} as defined in Part (a). Define the function $Q : \mathbb{R}^d \rightarrow \mathbb{R}$ by

$$Q(\beta) := \frac{1}{n} \sum_{i=1}^{n} \ln f_{\beta}(x_i, y_i), \quad \beta \in \mathbb{R}^d.$$

Find a system of linear equations $A\beta = b$ over variables $\beta = (\beta_1, \ldots, \beta_d) \in \mathbb{R}^d$ such that its solutions are maximizers of Q over all vectors in \mathbb{R}^d.

Write the system of linear of equations by defining the left-hand side matrix $A \in \mathbb{R}^m \times \mathbb{R}^d$ and right-hand side vector $b \in \mathbb{R}^m$ (here, m is the number of linear equations), and briefly (but precisely) justify your answer. You may define A and b as products of matrices and vectors if you like, but make sure these matrices and vectors are also clearly defined.

6.2 Linear algebraic perspective

Let $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$ be given, and let $\hat{\mathcal{R}}$ be defined by $\hat{\mathcal{R}}(\beta) := \|A\beta - b\|_2^2$.

6.2.1 Part (a)
Suppose the rank of A is smaller than d. Is the minimizer of $\hat{\mathcal{R}}$ to be uniquely defined?

Answer with "yes" or "no", and briefly (but precisely) justify your answer.

6.2.2 Part (b)
Suppose the rank of A is smaller than d. Is the orthogonal projection of b onto the range of A uniquely defined?

Answer with "yes" or "no", and briefly (but precisely) justify your answer.

6.2.3 Part (c)
Suppose you only have A and not b, but you are given an orthogonal projection \hat{b} of b onto the range of A. Explain how to find a minimizer of $\hat{\mathcal{R}}$ using only A and \hat{b}.

Answer with precise pseudocode for a procedure that takes as input A and \hat{b} and returns a minimizer of $\hat{\mathcal{R}}$. Briefly (but precisely) justify the correctness of the procedure.

6.3 The least (Euclidean) norm solution

Let $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. In lecture, we saw that the solution to the normal equations of minimum Euclidean norm is an element of the row space of A. Prove that if w is a solution to the normal equations that also is in the row space of A, then it is unique.
7 Linear algebra practice

7.1 Gradients and derivatives

In this exercise, \(A \in \mathbb{R}^{n \times n} \), \(b \in \mathbb{R}^n \), \(J \) is the Jacobian and \(\nabla \) is the gradient. Gradient is defined for scalar function from \(\mathbb{R}^n \) to \(\mathbb{R} \) and Jacobian for vector-valued functions. Sometime people tend to say gradient even if the function is vector-valued.

(a) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \), compute \(J(f)(x) \) for any \(x \in \mathbb{R}^n \) where \(f \) is differentiable.

(b) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), compute \(\nabla f(x) \) for any \(x \in \mathbb{R}^n \) where \(f \) is differentiable.

(c) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), compute \(\nabla f(x) \) for any \(x \in \mathbb{R}^n \) where \(f \) is differentiable.

(d) Let \(f : \mathbb{R}^n \rightarrow \mathbb{R} \), compute \(\nabla f(x) \) for any \(x \in \mathbb{R}^n \) where \(f \) is differentiable.