Overview

- Bagging and Random Forests
- Boosting
- Margins and over-fitting

Motivation

- Recall model averaging: given T real-valued predictors $\hat{f}^{(1)}, \ldots, \hat{f}^{(T)}$, form ensemble predictor \hat{f}_{avg}

$$\hat{f}_{avg}(x) := \frac{1}{T} \sum_{t=1}^{T} \hat{f}^{(t)}(x).$$

- (Squared loss) risk is

$$\mathcal{R}(\hat{f}_{avg}) = \frac{1}{T} \sum_{t=1}^{T} \mathcal{R}(\hat{f}^{(t)}) - \frac{1}{T} \sum_{t=1}^{T} \mathbb{E} \left[(\hat{f}_{avg}(X) - \hat{f}^{(t)}(X))^2 \right].$$

- For classification, analogue is **majority-vote classifier** \hat{f}_{maj}:

$$\hat{f}_{maj}(x) := \begin{cases} +1 & \text{if } \sum_{t=1}^{T} \hat{f}^{(t)}(x) > 0 \\ -1 & \text{otherwise} \end{cases}$$

(\hat{f}_{avg} is the scoring function used for \hat{f}_{maj})

How to get classifiers to combine?

- Starting anew; how should we train classifiers to combine in majority-vote?

- Recall: model averaging works well when
 - all $\hat{f}^{(t)}$ have similar risks, and
 - all $\hat{f}^{(t)}$ predict very differently from each other

- To first point, use same learning algorithm for all $\hat{f}^{(t)}$
- To second point, learning algorithm should have "high variance"
Using the same learning algorithm multiple times I

- Running same learning algorithm T times on the same data set yields T identical classifiers – not helpful!
- Instead, want to run same learning algorithm on T separate data sets.

\[S_1 \rightarrow \cdots \rightarrow S_T \]

Figure 1: What we want is T data sets drawn from P

Using the same learning algorithm multiple times II

- Invoke plug-in principle
 - In IID model, regard empirical distribution on training examples P_n as estimate of the example distribution P.
 - Draw T independent data sets from P_n; and run learning algorithm on each data set.
 - This is called bootstrap resampling.

\[P \rightarrow \cdots \rightarrow P_n \rightarrow S_1 \rightarrow \cdots \rightarrow S_T \]

Figure 2: What we can get is T data sets from P_n

Bagging

- **Bagging**: bootstrap aggregating (Breiman, 1994)
- Given training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{-1, +1\}$
- For $t = 1, \ldots, T$:
 - Randomly draw n examples with replacement from training data: $S_t^* := ((x_i^{(t)}, y_i^{(t)}))_{i=1}^n$ (bootstrap sample)
 - Run learning algorithm on S_t^* to get classifier $\hat{f}^{(t)}$
 - Return majority-vote classifier over $\hat{f}^{(1)}, \ldots, \hat{f}^{(T)}$

Aside: Sampling with replacement

- Pick n individuals from a population of size n with replacement.
- What is the chance that a given individual is not picked?

- Implications for bagging:
 - Each bootstrap sample contains about 63% of the training examples
 - Remaining 37% can be used to estimate error rate of classifier trained on bootstrap sample
Random forests

- **Random Forests** (Breiman, 2001): Bagging with randomized variant of decision tree learning algorithm
 - Each time we need to choose a split, pick random subset of \sqrt{d} features and only choose split from among those features.
 - Main idea: trees may use very different features, so less likely to make mistakes in the same way.

Classifiers with independent errors

- Say we have T binary classifiers $\hat{f}^{(1)}, \ldots, \hat{f}^{(T)}$
- Assume on a given x, each provides an incorrect prediction with probability 0.4:
 \[\Pr(\hat{f}^{(t)}(X) \neq Y | X = x) = 0.4. \]
 Moreover, assume error events are independent.
 - Use majority-vote classifier \hat{f}_{maj}.
 - What is chance that more than half of the classifiers give the incorrect prediction?

Coping with non-independent errors

- Classifier errors are unlikely to be independent; do something else to benefit from majority-vote
- Change how we obtain the individual classifiers:
 - Adaptively choose classifiers
 - Re-weight training data
- Start with uniform distribution over training examples
- Loop:
 - Use learning algorithm to get new classifier for ensemble
 - Re-weight training examples to emphasize examples on which new classifier is incorrect

Adaptive Boosting

- **AdaBoost** (Freund and Schapire, 1997)
- Training data $(x_1, y_1), \ldots, (x_n, y_n) \in \mathcal{X} \times \{-1, +1\}$
- Initialize $D_1(i) = 1/n$ for all $i = 1, \ldots, n$
- For $t = 1, \ldots, T$:
 - Run learning algorithm on D_t-weighted training examples, get classifier $f^{(t)}$
 - Update weights:
 \[
 z_t := \sum_{i=1}^{n} D_t(i) \cdot y_i f^{(t)}(x_i) \in [-1, +1] \\
 \alpha_t := \frac{1}{2} \ln \frac{1 + z_t}{1 - z_t} \in \mathbb{R} \\
 D_{t+1}(i) := \frac{D_t(i) \exp(-\alpha_t \cdot y_i f^{(t)}(x_i))}{Z_t} \quad \text{for } i = 1, \ldots, n.
 \]
 Here Z_t is normalizer that makes D_{t+1} a probability distribution.
 - Final classifier: $\hat{f}(x) = \text{sign}(\sum_{t=1}^{T} \alpha_t \cdot f^{(t)}(x))$
Plot of α_t as function of z_t

$$\alpha_t = \frac{1}{2} \ln \frac{1 + z_t}{1 - z_t} \in \mathbb{R}$$

Example: AdaBoost with decision stumps

- (From Figures 1.1 and 2.2 of Schapire & Freund text.)
- Use “decision stump” learning algorithm with AdaBoost
 - Each $f^{(t)}$ has the form
 $$f^{(t)}(x) = \begin{cases}
+1 & \text{if } x_i > \theta \\
-1 & \text{if } x_i \leq \theta
\end{cases} \quad \text{or} \quad f^{(t)}(x) = \begin{cases}
-1 & \text{if } x_i > \theta \\
+1 & \text{if } x_i \leq \theta
\end{cases}$$
- Straightforward to handle importance weights $D_t(i)$ in decision tree learning algorithm

Example execution of AdaBoost I

$f(1)$ $z_1 = 0.40$, $\alpha_1 = 0.42$

Example execution of AdaBoost II

$f(1)$ $z_1 = 0.40$, $\alpha_1 = 0.42$
Example execution of AdaBoost III

\[f(1) \]
\[z_1 = 0.40, \alpha_1 = 0.42 \]

Example execution of AdaBoost IV

\[f(1) \]
\[z_1 = 0.40, \alpha_1 = 0.42 \]

\[f(2) \]
\[z_2 = 0.58, \alpha_2 = 0.65 \]

Example execution of AdaBoost V

\[f(1) \]
\[z_1 = 0.40, \alpha_1 = 0.42 \]

\[f(2) \]
\[z_2 = 0.58, \alpha_2 = 0.65 \]

\[f(3) \]
\[z_3 = 0.72, \alpha_3 = 0.92 \]

Example execution of AdaBoost VI
Example execution of AdaBoost VII

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(1)$</td>
<td>$f(2)$</td>
<td>$f(3)$</td>
</tr>
<tr>
<td>$z_1 = 0.40, \alpha_1 = 0.42$</td>
<td>$z_2 = 0.58, \alpha_2 = 0.65$</td>
<td>$z_3 = 0.72, \alpha_3 = 0.92$</td>
</tr>
</tbody>
</table>

Final classifier: $\hat{f}(x) = \text{sign} \left(0.42f(1)(x) + 0.65f(2)(x) + 0.92f_3(x) \right)$

Training error rate of final classifier

- Let $\gamma_t := z_t/2$: advantage over random guessing achieved by $f^{(t)}$
- **Theorem:** Training error rate of final classifier is

$$\text{err}\left(\hat{f}, (x_i, y_i)_{i=1}^n\right) \leq \exp \left(-2 \sum_{t=1}^T \gamma_t^2 \right) = \exp \left(-2\bar{\gamma}^2 T \right)$$

where

$$\bar{\gamma}^2 := \frac{1}{T} \sum_{t=1}^T \gamma_t^2.$$

- AdaBoost is “adaptive”:
 - Some γ_t can be small (even negative)—only care about average $\bar{\gamma}^2$
 - What about true error rate in IID model?
 - A very complex model as T becomes large!

Surprising behavior of boosting

- AdaBoost + C4.5 decision tree learning on “letters” data set
- Training error rate is zero after five iterations.
- Test error rate continues to decrease, even up to 1000 iterations.

Figure 5: Figure 1.7 from Schapire & Freund text

- Training error rate is zero after five iterations.
- Test error rate continues to decrease, even up to 1000 iterations.
Look at scoring function of final classifier (appropriately normalized)

\[\hat{h}(x) := \frac{\sum_{t=1}^{T} \alpha_t \cdot f^{(t)}(x)}{\sum_{t=1}^{T} |\alpha_t|} \in [-1, +1]. \]

Say \(y \cdot \hat{h}(x) \) is margin achieved by \(\hat{h} \) on example \((x, y)\)

Theorem (Schapire, Freund, Bartlett, and Lee, 1998):
- Larger margins on training examples ⇒ better resistance to over-fitting in IID model
- AdaBoost tends to increase margins on training examples
- (Similar to but not same as SVM margins)

On “letters” data set

<table>
<thead>
<tr>
<th></th>
<th>(T = 5)</th>
<th>(T = 100)</th>
<th>(T = 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>training error rate</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>test error rate</td>
<td>8.4%</td>
<td>3.3%</td>
<td>3.1%</td>
</tr>
<tr>
<td>% margins (\leq 0.5)</td>
<td>7.7%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>min. margin</td>
<td>0.14</td>
<td>0.52</td>
<td>0.55</td>
</tr>
</tbody>
</table>