Overview

- Statistical model for regression problems
- Linear regression models
- MLE and ERM

Real-valued predictions I

Figure 1: Galton board

Real-valued predictions II

- Physical model: hard
- Statistical model: final position of ball is random
 - *Normal (Gaussian) distribution* with mean μ and variance σ^2
 - Written $N(\mu, \sigma^2)$
- Goal: predict final position accurately, measure *squared loss* (also called *squared error*)
 $$(\text{prediction} - \text{outcome})^2$$
- Note: outcome is random, so look at *expected squared loss* (also called *mean squared error*)
Optimal prediction for mean squared error

- Predict $\hat{y} \in \mathbb{R}$; true final position is Y (random variable) with mean $E(Y) = \mu$ and variance $\text{var}(Y) = E[(Y - E(Y))^2] = \sigma^2$.
- Squared error is $(\hat{y} - Y)^2$.
- Bias-variance decomposition:

So optimal prediction is $\hat{y} =$

- When parameters are unknown, can estimate from related data, ...

Example: Old Faithful I

- Example: When will “Old Faithful” geyser erupt?
- Predict “time between eruptions”
- Old Faithful Geyser Data

- Mean on past 136 observations: $\hat{\mu} = 70.7941$ minutes
 - So predict $\hat{y} = \hat{\mu} = 70.7941$

- Mean squared error on next 136 observations: 187.1894
 - Square root: 13.6817 minutes

Looking at the data

- Henry Woodward observed that “time between eruptions” seems related to “duration of latest eruption”

- Use “duration of latest eruption” as feature x
- Can use x to predict time until next eruption, y
Statistical model for regression

- Setting is same as for classification except:
 - Label is real number, rather than \(\{0, 1\}\) or \(\{1, 2, \ldots, K\}\)
 - Care about squared error, rather than whether prediction is correct
 - Risk of \(f\):
 \[
 \mathcal{R}(f) := \mathbb{E}[(f(X) - Y)^2],
 \]
 the expected squared loss of \(f\) on random example
- Note: “error rate” is also “risk”, but with different loss function, called zero-one loss \(\mathbb{I}\{f(x) \neq y\}\)

Optimal prediction function for regression

- If \((X, Y)\) is random test example, then optimal prediction function is
 \[
 f^*(x) = \mathbb{E}[Y \mid X = x]
 \]
- Also called the regression function
- Prediction function with smallest risk
- Depends on conditional distribution of \(Y\) given \(X\)

Linear regression models

- Suppose \(x\) is given by \(d\) real-valued features, so \(x \in \mathbb{R}^d\)
- Linear regression model for \((X, Y)\):
 - \(Y \mid X = x \sim N(x^T w, \sigma^2)\) (or really, any distribution with mean \(x^T w\) and variance \(\sigma^2\))
 - \(w \in \mathbb{R}^d\) is parameter vector of interest
 - \(\sigma^2 > 0\) is another parameter (not important for prediction)
 - \(w\) and \(\sigma^2\) not involved in marginal distribution of \(X\) (which we don’t care much about)

Upgrading linear regression

- Make linear regression more powerful by being creative about features
- Instead of using \(x\) directly, use \(\varphi(x)\) for some transformation \(\varphi\) (possibly vector-valued)
- Examples:
 - Non-linear scalar transformations, e.g., \(\varphi(x) = \ln(1 + x)\)
 - Logical formula, e.g., \(\varphi(x) = (x_1 \land x_5 \land \neg x_{10}) \lor (\neg x_2 \land x_7)\)
 - Trigonometric expansion, e.g., \(\varphi(x) = (1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots)\)
 - Polynomial expansion, e.g., \(\varphi(x) = (1, x_1, \ldots, x_d, x_1^2, \ldots, x_d^2, x_1 x_2, \ldots, x_{d-1} x_d)\)
 - Headless neural network \(\varphi(x) = N(x) \in \mathbb{R}^k\), where \(N: \mathbb{R}^d \to \mathbb{R}^k\) is a map computed by a intermediate layer of a neural network
Example: Taking advantage of linearity

- Example: y is health outcome, x is body temperature
 - Physician suggests relevant feature is (square) deviation from normal body temperature $(x - 98.6)^2$
 - What if you didn’t know the magic constant 98.6?

Example: Affine expansion

- Another example: Woodward used affine expansion
 - $\varphi(x) = (1, x)$
 - Parameter vector $w = (a, b)$
 - $\varphi(x)^T w = a + bx$, so a is intercept term
 - Generalizes to d features: just prepend the constant 1 feature
 $\varphi(x) = (1, x) \in \mathbb{R}^{d+1}$

Text features

- How to get features for text?
 - Suppose input is a word (sequence of characters).
 - $x_{\text{starts with _anti}} = 1$ (starts with “anti”)
 - $x_{\text{ends with _ology}} = 1$ (ends with “ology”)
 - ... (same for all four- & five-letter prefixes & suffixes)
 - $x_{\text{length} \leq 3} = 1$ (length ≤ 3)
 - $x_{\text{length} \leq 4} = 1$ (length ≤ 4)
 - ... (same with all positive integers ≤ 20)
 - Suppose input is a document (sequence of words).
 - $x_{\text{contains _aardvark}} = 1$ (contains “aardvark”)
 - ... (same for all words in dictionary)
 - $x_{\text{contains _each _day}} = 1$ (contains “each day”)
 - ... (same for all “bigrams” of words in dictionary)
 - $x_{\text{count _aardvark}} = \#$ appearances of “aardvark”
 - ... (same for all words, “bigrams”, ...)
 - End up with many features!

Sparse representations

- Sparse representation (e.g., via hash table)
 - E.g., “see spot run”
 - $x = \{ \text{"contains_see":1, "contains_spot":1, "contains_run":1, "contains_see_spot":1, "contains_spot_run":1} \}$
 - C.f. dense representation, which stores a lot of zeros for all of the words / bigrams that don’t appear.
 - What is computational cost of computing x^Tz?
Fitting linear regression models to data

- Treat training examples as iid, same distribution as test example
 - \(Y \mid X = x \sim N(x^T w, \sigma^2) \)
- Log-likelihood of \((w, \sigma^2)\) given data \((x_1, y_1), \ldots, (x_n, y_n) \in \mathbb{R}^d \times \mathbb{R}\):
 \[
 \sum_{i=1}^{n} \left\{ -\frac{1}{2\sigma^2} (x_i^T w - y_i)^2 + \frac{1}{2} \ln \frac{1}{2\pi \sigma^2} \right\} + \{ \text{terms not involving } (w, \sigma^2) \}
 \]
- The \(w\) that maximizes log-likelihood is same \(w\) that minimizes
 \[
 \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2.
 \]

MLE coincides with ERM

- Empirical distribution \(P_n\) on \((x_1, y_1), \ldots, (x_n, y_n)\): distribution that puts probability mass \(1/n\) on each training example.
- Execute the plug-in principle:
 - We want to find \(f: \mathbb{R}^n \rightarrow \mathbb{R}\) that minimizes risk
 \[
 \mathcal{R}(f) = \mathbb{E}[(f(X) - Y)^2],
 \]
 but we don’t know distribution \(P\) of \((X, Y)\) (or even conditional distribution of \(Y\) given \(X\)).
 - Replace \(P\) with \(P_n\) to get empirical risk
 \[
 \hat{\mathcal{R}}(f) := \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2,
 \]
 - which is the risk of \(f\) pretending that the distribution of \((X, Y)\) is \(P_n\).
 - So find \(f\) to minimize empirical risk: **Empirical Risk Minimizer (ERM)**
 - For linear functions \(f(x) = x^T w\), same as MLE for \(w\) in linear regression model (!!)

Geometric picture of empirical risk

![Figure 6: Empirical risk of \(w\) is average of vertical squared distances from hyperplane to data points](image)

ERM in matrix notation

- Let \(A = \frac{1}{\sqrt{n}} \begin{bmatrix} x_1^T & \ldots & x_n^T \end{bmatrix} \in \mathbb{R}^{n \times d}\) and \(b = \frac{1}{\sqrt{n}} \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{R}^n\)
- Empirical risk is
 \[
 \hat{\mathcal{R}}(w) = \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2 = \|Aw - b\|_2^2.
 \]
Normal equations

- From calculus:
 - Necessary condition for \(w \) to be minimizer of \(\hat{R} \) is that gradient of \(\hat{R} \) at \(w \) should vanish: \(\nabla \hat{R}(w) = 0 \)
 - Equivalent to \((A^T A)w = A^T b \)
 - System of linear equations in \(w \), called the normal equations
 - Every solution \(w \) to normal equations is a minimizer of \(\hat{R} \):

Algorithm for ERM

- Algorithm for finding ERM: Gaussian elimination to solve normal equations
 - Running time \(O(nd^2) \)
 - Can get good approximate solution in linear time \(O(nd) \)
 - Also called Ordinary Least Squares (OLS)

Linear algebraic interpretation of ERM

- Write \(A = \begin{bmatrix}
\uparrow & \cdots & \uparrow \\
\downarrow & & \downarrow \\
\end{bmatrix} \)
 - \(a_j \in \mathbb{R}^n \) is \(j \)-th column of \(A \)
 - Span of \(a_1, \ldots, a_d \) is \(\text{range}(A) \), a subspace of \(\mathbb{R}^n \)
 - Minimizing \(\| A w - b \|^2 \) over \(w \in \mathbb{R}^d \) is same as finding vector \(\hat{b} \) in \(\text{range}(A) \) closest to \(b \)
 - Solution \(\hat{b} \) is orthogonal projection of \(b \) onto \(\text{range}(A) \)

Performance of ERM

- How well does ERM solution \(\hat{w} \) work?
 - Study in context of IID model
 - Best linear predictor \(w^* \): minimizer of \(R(w) \).
 - Hope that \(R(\hat{w}) \approx R(w^*) \)

- **Theorem**: In IID model, ERM solution \(\hat{w} \) satisfies
 \[
 R(\hat{w}) \to R(w^*) + \frac{\text{tr}(\text{cov}(\varepsilon W))}{n}
 \]
 as \(n \to \infty \), where \(W = \mathbb{E}[XX^T]^{-1/2} X \) and \(\varepsilon = Y - X^T w^* \).

- If \((X, Y) \) follows linear regression model \(Y \mid X = x \sim N(x^T w^*, \sigma^2) \),
 then theorem simplifies to
 \[
 R(\hat{w}) \to R(w^*) + \frac{\sigma^2 d}{n} = \left(1 + \frac{d}{n} \right) \sigma^2.
 \]
Risk vs empirical risk

- Let \(\hat{w} \) be ERM solution.
- How do \(\hat{R}(\hat{w}) \) and \(R(\hat{w}) \) compare?
- **Theorem:** In IID model, \(E[\hat{R}(\hat{w})] \leq E[R(\hat{w})] \)

Over-fitting: when true risk is much higher than empirical risk.

- Note: Can estimate risk using test set, just as for classification problems.

Example of over-fitting

- \(\varphi(x) = (1, x, x^2, \ldots, x^k) \), degree-\(k \) polynomial expansion
- Dimension is \(d = k + 1 \)
- Any function of \(\leq k + 1 \) points can be interpolated by polynomial of degree \(\leq k \)
- So if \(n \leq k + 1 = d \), ERM solution \(\hat{w} \) will have \(\hat{R}(\hat{w}) = 0 \), even if true risk is \(\gg 0 \).

Outliers

- Common issue with using squared loss: sensitive to outliers
- Roughly: data points that don’t fit the same pattern as the rest
- Does removing the data point drastically change the fit?

Absolute loss

- One “fix”: change loss function
- Common choice: **absolute loss** \(|\hat{y} - y| \)
- Instead of solving linear system, now solve a linear program
- Less sensitive to abnormal \(y \)-values than squared loss
- However: changes what we are estimating ...
Heuristics for dealing with outliers

- **Heuristic I: random sample consensus (RANSAC)**
 - Pick a random subsample of data points — hopefully no outliers are picked! — and fit model to this subsample
 - If most of the remaining data are "well-fit", then halt
 - Else, try again

- **Heuristic II: iterative trimming**
 - Fit training data as usual
 - Throw out some of the least “well-fit” data points
 - Repeat until fit does not change too much

- Both heuristics are rather drastic!
 - What if outliers correspond to a subpopulation?
 - Should manually examine the putative outliers

Beyond empirical risk

- **Recall plug-in principle**
 - Want to minimize risk wrt (unavailable) P; use P_n instead

- **What if we can’t regard data as iid from P?**
 - Example: Suppose we know $P = 0.5M + 0.5F$ (mixture distribution)
 - We get size n_1 iid sample from M, and size n_2 iid sample from F, $n_2 \ll n_1$
 - How to implement plug-in principle?