Nearest neighbors

Overview

▶ The NN classifier
▶ Evaluation, hyperparameter tuning
▶ Ways to improve the NN classifier

Example: OCR for digits

▶ Goal: Automatically label images of handwritten digits
▶ Possible labels are \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
▶ Start with a large collection of already-labeled images

Figure 1: Example OCR digits from MNIST data set

Nearest neighbor (NN) classifier

▶ Nearest neighbor (NN) classifier \(\hat{f}_D \) represented using collection of labeled examples \(D := ((x_1, y_1), \ldots, (x_n, y_n)) \), plus a snippet of code
▶ Input: \(x \)
 ▶ Find \(x_i \) in \(D \) that is “closest” to \(x \) (the nearest neighbor)
 ▶ (Break ties in some arbitrary fixed way)
 ▶ Return \(y_i \)

Figure 2: Schematic of NN classifier
Distances
- Treat (grayscale) images as vectors in Euclidean space \mathbb{R}^d
 - $d = 28^2 = 784$
 - Generalizes physical 3-dimensional space
- Each point $x = (x_1, \ldots, x_d)$ is a vector of d real numbers
 - $\|x - z\|_2 = \sqrt{\sum_{i=1}^d (x_i - z_i)^2}$
 - Also called ℓ_2 distance
- Why use this for images? Simplicity
- Why not use this for images? Spatial information is lost, ...

Figure 3: Pixels of OCR image

OCR via NN
- Images are represented as vectors of real numbers
- Labels are $\{0, 1, \ldots, 9\}$
- Given: 60000 labeled examples
- Construct NN classifier using these examples
 - Distance comes from treating "pixel space" as "Euclidean space"
- How good is this classifier?

Error rate
- Error rate (on a collection of labeled examples S)
 - Fraction of labeled examples in S that have incorrect label prediction from \hat{f}
 - Written $\text{err}(\hat{f}, S)$
 - (Often, the word "rate" is omitted)
- Error rate of NN classifier?

Test error rate
- Better evaluation: test error rate
 - Train/test split, $S \cap T = \emptyset$
 - Classifier \hat{f} only based on S
 - Training error rate: $\text{err}(\hat{f}, S)$
 - Test error rate: $\text{err}(\hat{f}, T)$
 - On OCR data: test error rate is 3.09%
Why does NN work?

- Assumption: Nearby points have same label.
- As number of training examples increases, nearest neighbor of a test point becomes closer.
- Corollary: NN will have test error rate zero, given enough training examples.

Diagnostics

- Error analysis: look at the data and try to understand what is going on.
- Some mistakes made by NN could have been fixed by plurality vote over three nearest neighbors.

k-nearest neighbor classifier

- **k-nearest neighbor (k-NN) classifier**
 - Input: x
 - Find the k nearest neighbors of x in D
 - Return the plurality of the corresponding labels
 - As before, break ties in some arbitrary fixed way

Typical effect of k

- Smaller k: smaller training error rate
- Larger k: higher training error rate, but predictions more “stable” due to voting.

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>test error rate</td>
<td>0.0309</td>
<td>0.0295</td>
<td>0.0312</td>
<td>0.0306</td>
<td>0.0341</td>
</tr>
</tbody>
</table>
Hyperparameter tuning

- \(k \) is a **hyperparameter** of \(k \)-NN
- How to choose hyperparameters?
 - Bad idea: Choosing \(k \) that yields lowest training error rate
 (degenerate choice: \(k = 1 \))
 - Better idea: Simulate train/test split on the training data
- Hold-out approach
 - **Hold-out set** (aka **validation set**)

Distance functions I

- Specialize to input types
 - Edit distance for strings
 - Shape distance for images
 - Time warping distance for audio waveforms

Distance functions II

- Generic distances for vectors of real numbers
 - \(\ell_p \) distances
 \[
 \| \mathbf{x} - \mathbf{z} \|_p = \left(\sum_{i=1}^{d} |x_i - z_i|^p \right)^{1/p}.
 \]
 - What are the unit balls for these distances (in \(\mathbb{R}^2 \))?

Distance functions III

- On OCR data:
<table>
<thead>
<tr>
<th>distance</th>
<th>(\ell_2)</th>
<th>(\ell_3)</th>
<th>tangent</th>
<th>shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>test error rate</td>
<td>0.0309</td>
<td>0.0283</td>
<td>0.0110</td>
<td>0.0063</td>
</tr>
</tbody>
</table>
Features

- When using numerical features (arranged in a vector, like in \mathbb{R}^d):
 - Scale of features matters
 - Noisy features can ruin NN
- “Curse of dimension”
 - Weird effects in \mathbb{R}^d for large d
 - E.g., can find $2^{\Omega(d)}$ points that are approximately equidistant

Computation for NN

- Brute force search: $\Theta(dn)$ time for each prediction
- Data structures: “improve” to $2^d \log(n)$ time
- Approximate nearest neighbors: sub-linear time to get “approximate” answers