Margins

Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. We say S is linearly separable if there exists $w \in \mathbb{R}^d$ such that
\[
\min_{(x,y) \in S} y \langle w, x \rangle > 0,
\]
and we call w a linear separator for S.

The (minimum) margin of a linear separator w for S is the minimum distance from x to the hyperplane orthogonal to w, among all $(x, y) \in S$. Note that this notion of margin is invariant to positive scaling of w. If we rescale w so that
\[
\min_{(x,y) \in S} y \langle w, x \rangle = 1,
\]
then this minimum distance is $1/\|w\|_2$. Therefore, the linear separator with the largest minimum margin is described by the following mathematical optimization problem:
\[
\min_{w \in \mathbb{R}^d} \frac{1}{2} \|w\|_2^2 \\
\text{s.t. } y \langle w, x \rangle \geq 1, \quad (x,y) \in S.
\]

Perceptron algorithm

The Perceptron algorithm is given as follows. The input to the algorithm is a collection S of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$.

- Begin with $\hat{w}_1 := 0 \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$:
 - If there is a labeled example in S (call it (x_t, y_t)) such that $y_t \langle \hat{w}_t, x_t \rangle \leq 0$, then set $\hat{w}_{t+1} := \hat{w}_t + y_t x_t$.
 - Else, return \hat{w}_t.

Theorem. Let S be a collection of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. Suppose there exists a vector $w_\ast \in \mathbb{R}^d$ such that
\[
\min_{(x,y) \in S} y \langle w_\ast, x \rangle = 1.
\]
Then Perceptron on input S halts after at most $\|w_\ast\|_2^2 L^2$ loop iterations, where $L := \max_{(x,y) \in S} \|x\|_2$.

Proof. Suppose Perceptron does not exit the loop in the t-th iteration. Then there is a labeled example $(x_t, y_t) \in S$ such that
\[
y_t \langle w_\ast, x_t \rangle \geq 1,
\]
\[
y_t \langle \hat{w}_t, x_t \rangle \leq 0.
\]
We bound $\langle w_\ast, \hat{w}_{t+1} \rangle$ from above and below to deduce a bound on the number of loop iterations. First, we bound $\langle w_\ast, \hat{w}_t \rangle$ from below:
\[
\langle w_\ast, \hat{w}_{t+1} \rangle = \langle w_\ast, \hat{w}_t \rangle + y_t \langle w_\ast, x_t \rangle \geq \langle w_\ast, \hat{w}_t \rangle + 1.
\]
Since $\hat{w}_1 = 0$, we have
\[
\langle w_*, \hat{w}_1 \rangle \geq t.
\]
We now bound $\langle w_*, \hat{w}_{t+1} \rangle$ from above. By Cauchy-Schwarz,
\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 \|\hat{w}_{t+1}\|_2.
\]
Also,
\[
\|\hat{w}_{t+1}\|_2^2 = \|\hat{w}_t\|_2^2 + 2y_t \langle \hat{w}_t, x_t \rangle + y_t^2 \|x_t\|_2^2 \leq \|\hat{w}_t\|_2^2 + L^2.
\]
Since $\|\hat{w}_1\|_2 = 0$, we have
\[
\|\hat{w}_{t+1}\|_2^2 \leq L^2 t,
\]
so
\[
\langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{t}.
\]
Combining the upper and lower bounds on $\langle w_*, \hat{w}_{t+1} \rangle$ shows that
\[
t \leq \langle w_*, \hat{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{t},
\]
which in turn implies the inequality $t \leq \|w_*\|_2^2 L^2$. \hfill \qed

Online Perceptron algorithm

The Online Perceptron algorithm is given as follows. The input to the algorithm is a sequence $(x_1, y_1), (x_2, y_2), \ldots$ of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$.

- Begin with $\hat{w}_1 := 0 \in \mathbb{R}^d$.
- For $t = 1, 2, \ldots$:
 - If $y_t \langle \hat{w}_t, x_t \rangle \leq 0$, then set $\hat{w}_{t+1} := \hat{w}_t + y_t x_t$.
 - Else, $\hat{w}_{t+1} := \hat{w}_t$.

We say that Online Perceptron makes a *mistake* in round t if $y_t \langle \hat{w}_t, x_t \rangle \leq 0$.

Theorem. Let $(x_1, y_1), (x_2, y_2), \ldots$ be a sequence of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$ such that there exists a vector $w_* \in \mathbb{R}^d$ satisfying
\[
\min_{t=1,2,\ldots} y_t \langle w_*, x_t \rangle = 1.
\]
Then Online Perceptron on input $(x_1, y_1), (x_2, y_2), \ldots$ makes at most $\|w_*\|_2^2 L^2$ mistakes, where $L := \max_{t=1,2,\ldots} \|x_t\|_2$.

Proof. The proof of this theorem is essentially the same as the proof of the iteration bound for Perceptron. \hfill \qed

Online Perceptron may be applied to a collection of labeled examples S by considering the labeled examples in S in any (e.g., random) order. If S is linearly separable, then the number of mistakes made by Online Perceptron can be bounded using the theorem.

However, Online Perceptron is also useful when S is not linearly separable. This is especially notable in comparison to Perceptron, which never terminates if S is not linearly separable.

Theorem. Let $(x_1, y_1), (x_2, y_2), \ldots$ be a sequence of labeled examples from $\mathbb{R}^d \times \{-1, +1\}$. Online Perceptron on input $(x_1, y_1), (x_2, y_2), \ldots$ makes at most
\[
\min_{w_* \in \mathbb{R}^d} \left[\|w_*\|_2^2 L^2 + \|w_*\|_2 L \left(\sum_{t \in M} \ell(\langle w_*, x_t \rangle, y_t) + \sum_{t \in M} \ell(\langle w_*, x_t \rangle, y_t) \right) \right]
\]
mistakes, where $L := \max_{t=1,2,\ldots} \|x_t\|_2$, M is the set of rounds on which Online Perceptron makes a mistake, and $\ell(\hat{y}, y) := [1 - \hat{y} y]_+ = \max\{0, 1 - \hat{y} y\}$ is the *hinge loss* of \hat{y} when y is the correct label.
Proof. Fix any \(w_* \in \mathbb{R}^d \). Consider any round \(t \) in which Online Perceptron makes a mistake. Let \(\mathcal{M}_t := \{1, \ldots, t\} \cap \mathcal{M} \) and \(M_t := |\mathcal{M}_t| \). We will bound \(\langle w_*, \tilde{w}_{t+1} \rangle \) from above and below to deduce a bound on \(M_t \), the number of mistakes made by Online Perceptron through the first \(t \) rounds. First we bound \(\langle w_*, \tilde{w}_{t+1} \rangle \) from above. By Cauchy-Schwarz,

\[
\langle w_*, \tilde{w}_{t+1} \rangle \leq \|w_*\|_2 \|\tilde{w}_{t+1}\|_2.
\]

Moreover,

\[
\|\tilde{w}_{t+1}\|_2^2 = \|\tilde{w}_t\|_2^2 + 2y_t \langle \tilde{w}_t, x_t \rangle + y_t^2 \|x_t\|_2^2 \leq \|\tilde{w}_t\|_2^2 + L^2.
\]

Since \(\tilde{w}_1 = 0 \), we have

\[
\|\tilde{w}_{t+1}\|_2^2 \leq L^2 M_t,
\]

and thus

\[
\langle w_*, \tilde{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{M_t}.
\]

We now bound \(\langle w_*, w_{t+1} \rangle \) from below:

\[
\langle w_*, \tilde{w}_{t+1} \rangle = \langle w_*, \tilde{w}_t \rangle + 1 - [1 - y_t \langle w_*, x_t \rangle]
\geq \langle w_*, \tilde{w}_t \rangle + 1 - [1 - y_t \langle w_*, x_t \rangle]_
\]

\[
= \langle w_*, \tilde{w}_t \rangle + 1 - \ell(\langle w_*, x_t \rangle, y_t),
\]

Since \(\tilde{w}_1 = 0 \),

\[
\langle w_*, \tilde{w}_{t+1} \rangle \geq M_t - H_t,
\]

where

\[
H_t := \sum_{i \in \mathcal{M}_t} \ell(\langle w_*, x_i \rangle, y_i).
\]

Combining the upper and lower bounds on \(\langle w_*, \tilde{w}_{t+1} \rangle \) shows that

\[
M_t - H_t \leq \langle w_*, \tilde{w}_{t+1} \rangle \leq \|w_*\|_2 L \sqrt{M_t},
\]

i.e.,

\[
M_t - \|w_*\|_2 L \sqrt{M_t} - H_t \leq 0.
\]

This inequality is quadratic in \(\sqrt{M_t} \). By solving it\(^1\), we deduce the bound

\[
M_t \leq \frac{1}{2} \|w_*\|_2^2 L^2 + \frac{1}{2} \|w_*\|_2 L \sqrt{\|w_*\|_2^2 L^2 + 4H_t + H_t},
\]

which can be further loosened to the following (slightly more interpretable) bound:

\[
M_t \leq \|w_*\|_2^2 L^2 + \|w_*\|_2 L \sqrt{H_t + H_t}.
\]

The claim follows.

\(^1\)The inequality is of the form \(x^2 - bx - c \leq 0 \) for some non-negative \(b \) and \(c \). This implies that \(x \leq (b + \sqrt{b^2 + 4c})/2 \), and hence \(x^2 \leq (b^2 + 2b\sqrt{b^2 + 4c})/4 \). We can then use the fact that \(\sqrt{A + B} \leq \sqrt{A} + \sqrt{B} \) for any non-negative \(A \) and \(B \) to deduce \(x^2 \leq b^2 + b\sqrt{e} + c \).