Generative models for classification

COMS 4771
1. Prediction functions
Fish on conveyer belt

Goal: fish-packing plant wants to automate the process of sorting incoming fish on conveyor belt according to species.

Salmon or sea-bass?
Goal: fish-packing plant wants to automate the process of sorting incoming fish on conveyor belt according to species.

Salmon or sea-bass?

- **Side-information**: measurements/observations that may inform your prediction.

 E.g., length of the fish.
Goal: fish-packing plant wants to automate the process of sorting incoming fish on conveyor belt according to species.

Salmon or sea-bass?

- **Side-information:** measurements/observations that may inform your prediction. E.g., length of the fish.

- How can we model this problem statistically?
Prediction problem

Two Galton boards put side-by-side (with some overlap):

A ball is dropped from one of the boards.

Random variable Y: which side the ball was dropped from (0 or 1).

You observe the (horizontal) position of the ball.

Random variable X: position of the ball (real number).

Our task: given observation, predict which side the ball was dropped from.

Given X, predict value of Y.

Prediction problem

Two Galton boards put side-by-side (with some overlap):

- A ball is dropped from one of the boards.

Random variable Y: which side ball was dropped from (0 or 1).

Random variable X: position of ball (real number).

Our task: given observation, predict side the ball was dropped from.

Given X, predict value of Y.
Prediction problem

Two Galton boards put side-by-side (with some overlap):

- A ball is dropped from one of the boards.
- You observe the (horizontal) position of the ball.

Random variable Y: which side the ball was dropped from (0 or 1).

Random variable X: position of the ball (real number).

Our task: given observation, predict side the ball was dropped from.

Given X, predict value of Y.
Prediction problem

Two Galton boards put side-by-side (with some overlap):

- A ball is dropped from one of the boards.
- You observe the (horizontal) position of the ball.
- **Our task**: given observation, predict side the ball was dropped from.
Prediction problem

Two Galton boards put side-by-side (with some overlap):

- A ball is dropped from one of the boards.
 Random variable Y: which side ball was dropped from (0 or 1).
- You observe the (horizontal) position of the ball.
 Random variable X: position of ball (real number).
- **Our task**: given observation, predict side the ball was dropped from.
 Given X, predict value of Y.
Statistical model

Which side ball is dropped from is a coin toss.

\[Y \sim \text{Bern}(p). \]
Statistical model

Which side ball is dropped from is a coin toss.

\[Y \sim \text{Bern}(p). \]

Distribution of ball position depends on which side it was dropped from.

\[X \mid Y = y \sim N(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]
Statistical model

- Which side ball is dropped from is a coin toss.

\[Y \sim \text{Bern}(p). \]

- Distribution of ball position depends on which side it was dropped from.

\[X \mid Y = y \sim \mathcal{N}(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

Note: This model ignores effect of right board when ball is dropped from left board, and vice versa.
Statistical model

- Which side ball is dropped from is a coin toss.

\[Y \sim \text{Bern}(p). \]

- Distribution of ball position depends on which side it was dropped from.

\[X \mid Y = y \sim N(\mu_y, \sigma^2_y) \quad \text{for each } y \in \{0, 1\}. \]

Note: This model ignores effect of right board when ball is dropped from left board, and vice versa.

- **Parameters:** \(p \in [0, 1], \mu_0, \mu_1 \in \mathbb{R}, \sigma^2_0, \sigma^2_1 > 0 \)

Collect into a parameter vector \(\theta = (p, \mu_0, \mu_1, \sigma^2_0, \sigma^2_1) \).
Statistical model

- Which side ball is dropped from is a coin toss.

\[Y \sim \text{Bern}(p). \]

- Distribution of ball position depends on which side it was dropped from.

\[X \mid Y = y \sim \mathcal{N}(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

Note: This model ignores effect of right board when ball is dropped from left board, and vice versa.

- **Parameters:** \(p \in [0, 1], \mu_0, \mu_1 \in \mathbb{R}, \sigma_0^2, \sigma_1^2 > 0 \)

Collect into a parameter vector \(\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \).

This is an example of a **generative model** for classification.
Suppose we know \(\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \). How should we predict \textbf{given that we observe } X = x?
Prediction strategy

Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2)$.
How should we predict given that we observe $X = x$?

- If $P(Y = 1 \mid X = x) > 1/2$, then predict 1.
Suppose we know \(\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \).

How should we predict given that we observe \(X = x \)?

- If \(P(Y = 1 \mid X = x) > 1/2 \), then predict 1.
- If \(P(Y = 1 \mid X = x) \leq 1/2 \), then predict 0.
Prediction strategy

Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2)$.
How should we predict given that we observe $X = x$?

- If $\mathbb{P}(Y = 1 \mid X = x) > 1/2$, then predict 1.
- If $\mathbb{P}(Y = 1 \mid X = x) \leq 1/2$, then predict 0.

This defines a prediction function (a.k.a. predictor) $f^* : \mathbb{R} \rightarrow \{0, 1\}$:

$$f^*(x) = 1\{\mathbb{P}(Y = 1 \mid X = x) > 1/2\} \quad \text{for all } x \in \mathbb{R},$$
Prediction strategy

Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma^2_0, \sigma^2_1)$.

How should we predict given that we observe $X = x$?

- If $\mathbb{P}(Y = 1 \mid X = x) > 1/2$, then predict 1.
- If $\mathbb{P}(Y = 1 \mid X = x) \leq 1/2$, then predict 0.

This defines a prediction function (a.k.a. predictor) $f^* : \mathbb{R} \to \{0, 1\}$:

$$f^*(x) = \mathbb{1}\{\mathbb{P}(Y = 1 \mid X = x) > 1/2\} \quad \text{for all } x \in \mathbb{R},$$

which is the same as

$$f^*(x) = \arg \max_{y \in \{0, 1\}} \mathbb{P}(Y = y \mid X = x) \quad \text{for all } x \in \mathbb{R}.$$
Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2)$. How should we predict given that we observe $X = x$?

- If $\mathbb{P}(Y = 1 | X = x) > 1/2$, then predict 1.
- If $\mathbb{P}(Y = 1 | X = x) \leq 1/2$, then predict 0.

This defines a prediction function (a.k.a. predictor) $f^*: \mathbb{R} \rightarrow \{0, 1\}$:

$$f^*(x) = \mathbb{1}\{\mathbb{P}(Y = 1 | X = x) > 1/2\} \quad \text{for all } x \in \mathbb{R},$$

which is the same as

$$f^*(x) = \arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y | X = x) \quad \text{for all } x \in \mathbb{R}.$$

Using this strategy, what is the probability that you predict incorrectly?
Prediction strategy

Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma^2_0, \sigma^2_1)$.

How should we predict given that we observe $X = x$?

- If $\mathbb{P}(Y = 1 \mid X = x) > 1/2$, then predict 1.
- If $\mathbb{P}(Y = 1 \mid X = x) \leq 1/2$, then predict 0.

This defines a prediction function (a.k.a. predictor) $f^* : \mathbb{R} \to \{0, 1\}$:

$$f^*(x) = 1 \{ \mathbb{P}(Y = 1 \mid X = x) > 1/2 \} \quad \text{for all } x \in \mathbb{R},$$

which is the same as

$$f^*(x) = \arg \max_{y \in \{0, 1\}} \mathbb{P}(Y = y \mid X = x) \quad \text{for all } x \in \mathbb{R}.$$

Using this strategy, what is the probability that you predict incorrectly?

$$\mathbb{P}(f^*(x) \neq Y \mid X = x) = \min_{y \in \{0, 1\}} 1 - \mathbb{P}(Y = y \mid X = x);$$

$$\mathbb{P}(f^*(X) \neq Y) = \mathbb{E} \left[\min_{y \in \{0, 1\}} 1 - \mathbb{P}(Y = y \mid X) \right].$$
Prediction strategy

Suppose we know \(\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \).

How should we predict given that we observe \(X = x \)?

- If \(P(Y = 1 \mid X = x) > 1/2 \), then predict 1.
- If \(P(Y = 1 \mid X = x) \leq 1/2 \), then predict 0.

This defines a prediction function (a.k.a. predictor) \(f^* : \mathbb{R} \to \{0, 1\} \):

\[
f^*(x) = \mathbf{1}\{P(Y = 1 \mid X = x) > 1/2\} \quad \text{for all } x \in \mathbb{R},
\]

which is the same as

\[
f^*(x) = \arg\max_{y \in \{0, 1\}} P(Y = y \mid X = x) \quad \text{for all } x \in \mathbb{R}.
\]

Using this strategy, what is the probability that you predict incorrectly?

\[
P(f^*(x) \neq Y \mid X = x) = \min_{y \in \{0, 1\}} 1 - P(Y = y \mid X = x);
\]

\[
P(f^*(X) \neq Y) = \mathbb{E} \left[\min_{y \in \{0, 1\}} 1 - P(Y = y \mid X) \right] .
\]

This is the best you can do!
Suppose we know $\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2)$.

How should we predict \textbf{given that we observe} $X = x$?

- If $P(Y = 1 \mid X = x) > 1/2$, then predict 1.
- If $P(Y = 1 \mid X = x) \leq 1/2$, then predict 0.

This defines a \textit{prediction function} (a.k.a. \textit{predictor}) $f^* : \mathbb{R} \to \{0, 1\}$:

$$f^*(x) = 1 \{ P(Y = 1 \mid X = x) > 1/2 \} \quad \text{for all } x \in \mathbb{R},$$

which is the same as

$$f^*(x) = \arg \max_{y \in \{0, 1\}} P(Y = y \mid X = x) \quad \text{for all } x \in \mathbb{R}.$$

Using this strategy, \textbf{what is the probability that you predict incorrectly?}

$$P(f^*(x) \neq Y \mid X = x) = \min_{y \in \{0, 1\}} 1 - P(Y = y \mid X = x);$$

$$P(f^*(X) \neq Y) = \mathbb{E} \left[\min_{y \in \{0, 1\}} 1 - P(Y = y \mid X) \right].$$

This is the best you can do!

\textbf{How do we implement this prediction strategy using knowledge of θ?}
Bayes’ rule

Generative model specifies dist. of Y and conditional dist. of X given Y.
Bayes’ rule

Generative model specifies dist. of Y and conditional dist. of X given Y.

Bayes’ rule:

\[
P(Y = y \mid X = x) = \frac{P(Y = y \land X = x)}{P(X = x)}
= \frac{P(Y = y) \cdot P(X = x \mid Y = y)}{P(X = x)}.
\]
Bayes’ rule

Generative model specifies dist. of Y and conditional dist. of X given Y.

Bayes’ rule:

\[
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(Y = y \land X = x)}{\mathbb{P}(X = x)} = \frac{\mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y)}{\mathbb{P}(X = x)}.
\]

▶ Observe that

\[
\arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y \mid X = x) = \arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y),
\]

since denominator $\mathbb{P}(X = x)$ in Bayes’ rule does not involve y.
Bayes’ rule

Generative model specifies dist. of Y and conditional dist. of X given Y.

Bayes’ rule:

\[
\mathbb{P}(Y = y \mid X = x) = \frac{\mathbb{P}(Y = y \land X = x)}{\mathbb{P}(X = x)} = \frac{\mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y)}{\mathbb{P}(X = x)}.
\]

- Observe that

 \[
 \arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y \mid X = x) = \arg \max_{y \in \{0,1\}} \mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y),
 \]

 since denominator $\mathbb{P}(X = x)$ in Bayes’ rule does not involve y.

- When X is continuous random variable, use its (conditional) density in place of $\mathbb{P}(X = x \mid Y = y)$.
Bayes’ rule

Generative model specifies \textit{dist. of} Y and \textit{conditional dist. of} X \textit{given} Y.

\textbf{Bayes’ rule:}

\[
P(Y = y \mid X = x) = \frac{P(Y = y \land X = x)}{P(X = x)}
= \frac{P(Y = y) \cdot P(X = x \mid Y = y)}{P(X = x)}.
\]

\begin{itemize}
 \item Observe that
 \[\arg \max_{y \in \{0,1\}} P(Y = y \mid X = x) = \arg \max_{y \in \{0,1\}} P(Y = y) \cdot P(X = x \mid Y = y),\]
 since denominator $P(X = x)$ in Bayes’ rule does not involve y.
 \item When X is continuous random variable, use its (conditional) density in place of $P(X = x \mid Y = y)$.
\end{itemize}

Can plug-in expressions for $P(Y = y)$ and $P(X = x \mid Y = y)$ using model parameters θ.

“Two Galton boards” model:

\[Y \sim \text{Bern}(p), \]
\[X \mid Y = y \sim \mathcal{N}(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

\[
P(Y = y) \cdot P(X = x \mid Y = y) = p^y (1 - p)^{1-y} \cdot \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp \left(-\frac{(x - \mu_y)^2}{2\sigma_y^2} \right).
\]
“Two Galton boards” model:

\[Y \sim \text{Bern}(p), \]
\[X \mid Y = y \sim \text{N}(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

\[\mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y) = p^y(1 - p)^{1-y} \cdot \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma^2_y}\right). \]

Optimal predictor:

\[f^*(x) = \arg \max_{y \in \{0,1\}} p^y(1 - p)^{1-y} \cdot \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x - \mu_y)^2}{2\sigma^2_y}\right). \]

Example:

\[p = 0.7, \]
\[\mu_0 = 1, \sigma_0^2 = 4, \]
\[\mu_1 = 0, \sigma_1^2 = 1. \]
General setting for classification problems

\((X, Y)\) is pair of random variables. Goal is to predict \(Y\) after observing \(X\).
General setting for classification problems

\((X, Y)\) is pair of random variables. Goal is to predict \(Y\) after observing \(X\).

- \(X\) takes values in \(\mathcal{X}\) (**feature space**).

 E.g., \(\mathcal{X} = \mathbb{R}\).

 This is **side-information** that is supposed to help us predict \(Y\).
General setting for classification problems

(X, Y) is pair of random variables. Goal is to predict Y after observing X.

- X takes values in \mathcal{X} (feature space).
 E.g., $\mathcal{X} = \mathbb{R}$.
 This is side-information that is supposed to help us predict Y.

- Y takes values in \mathcal{Y} (label space or output space).
 In this lecture, $\mathcal{Y} = \{1, \ldots, K\}$ or $\mathcal{Y} = \{0, 1\}$ (classification problems).
General setting for classification problems

(X, Y) is pair of random variables. Goal is to predict Y after observing X.

- X takes values in \mathcal{X} (*feature space*).

 E.g., $\mathcal{X} = \mathbb{R}$.

 This is *side-information* that is supposed to help us predict Y.

- Y takes values in \mathcal{Y} (*label space* or *output space*).

 In this lecture, $\mathcal{Y} = \{1, \ldots, K\}$ or $\mathcal{Y} = \{0, 1\}$ (*classification problems*).

Use predictor $f: \mathcal{X} \rightarrow \mathcal{Y}$ to form prediction $\hat{Y} = f(X)$.

Risk of predictor f:

$$R(f) := P(f(X) \neq Y).$$

Optimal predictor $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ with smallest risk is

$$f^*(x) = \text{arg} \max_{y \in \mathcal{Y}} P(Y = y | X = x) \text{ for all } x \in \mathcal{X}.$$

Also called the *Bayes predictor*.

Note: optimal predictor depends on dist. of (X, Y), which is typically unknown!
General setting for classification problems

(X, Y) is pair of random variables. Goal is to predict Y after observing X.

- X takes values in \mathcal{X} (feature space).
 E.g., $\mathcal{X} = \mathbb{R}$.
 This is side-information that is supposed to help us predict Y.

- Y takes values in \mathcal{Y} (label space or output space).
 In this lecture, $\mathcal{Y} = \{1, \ldots, K\}$ or $\mathcal{Y} = \{0, 1\}$ (classification problems).

Use predictor $f : \mathcal{X} \rightarrow \mathcal{Y}$ to form prediction $\hat{Y} = f(X)$.

Risk of predictor f:

$$\mathcal{R}(f) := \mathbb{P}(f(X) \neq Y).$$

Optimal predictor $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ with smallest risk is

$$f^*(x) = \arg \max_{y \in \mathcal{Y}} \mathbb{P}(Y = y \mid X = x) \quad \text{for all } x \in \mathcal{X}.$$

Also called the Bayes predictor.
General setting for classification problems

(X, Y) is pair of random variables. Goal is to predict Y after observing X.

- X takes values in \mathcal{X} (feature space).

 E.g., $\mathcal{X} = \mathbb{R}$.

 This is side-information that is supposed to help us predict Y.

- Y takes values in \mathcal{Y} (label space or output space).

 In this lecture, $\mathcal{Y} = \{1, \ldots, K\}$ or $\mathcal{Y} = \{0, 1\}$ (classification problems).

Use predictor $f : \mathcal{X} \rightarrow \mathcal{Y}$ to form prediction $\hat{Y} = f(X)$.

Risk of predictor f:

$$\mathcal{R}(f) := \mathbb{P}(f(X) \neq Y).$$

Optimal predictor $f^* : \mathcal{X} \rightarrow \mathcal{Y}$ with smallest risk is

$$f^*(x) = \arg \max_{y \in \mathcal{Y}} \mathbb{P}(Y = y \mid X = x) \quad \text{for all } x \in \mathcal{X}.$$

Also called the Bayes predictor.

Note: optimal predictor depends on dist. of (X, Y), which is typically unknown!
2. From data to prediction functions
IID model

IID model: *training data* $(X_1, Y_1), \ldots, (X_n, Y_n)$ and *test example* (X, Y) are $n + 1$ iid pairs from probability distribution P_θ with parameter vector θ.

1. Estimate unknowns θ using training data $(X_1, Y_1), \ldots, (X_n, Y_n)$.
2. Plug estimate $\hat{\theta}$ into formula for optimal predictor. E.g., for "Two Galton boards" model: with $\hat{\theta} = (\hat{p}, \hat{\mu}_0, \hat{\mu}_1, \hat{\sigma}_0^2, \hat{\sigma}_1^2)$, form predictor \hat{f} given by

 $$\hat{f}(x) := \text{arg max}_{y \in \{0, 1\}} \hat{p} \cdot 1_y \cdot \sqrt{2 \pi \hat{\sigma}^2} \cdot \exp\left(-\frac{(x - \hat{\mu}_y)^2}{2 \hat{\sigma}^2}
ight).$$

We call \hat{f} a plug-in predictor.
3. Prediction of Y given X: $\hat{Y} := \hat{f}(X)$.
IID model

IID model: *training data* \((X_1, Y_1), \ldots, (X_n, Y_n)\) and *test example* \((X, Y)\) are \(n + 1\) iid pairs from probability distribution \(P_\theta\) with parameter vector \(\theta\).

1. Estimate unknowns \(\theta\) using training data \((X_1, Y_1), \ldots, (X_n, Y_n)\).
IID model: training data $(X_1, Y_1), \ldots, (X_n, Y_n)$ and test example (X, Y) are $n + 1$ iid pairs from probability distribution P_θ with parameter vector θ.

1. Estimate unknowns θ using training data $(X_1, Y_1), \ldots, (X_n, Y_n)$.

2. Plug estimate $\hat{\theta}$ into formula for optimal predictor.

$$\hat{f}(x) := \arg \max_{y \in \{0, 1\}} \hat{p}y (1 - \hat{p}) 1 - y \cdot 1 \sqrt{2 \pi \hat{\sigma}^2} \exp\left(\frac{- (x - \hat{\mu}_y)^2}{2 \hat{\sigma}^2 y}\right).$$

We call \hat{f} a plug-in predictor.
IID model

IID model: *training data* \((X_1, Y_1), \ldots, (X_n, Y_n)\) and *test example* \((X, Y)\) are \(n + 1\) iid pairs from probability distribution \(P_\theta\) with parameter vector \(\theta\).

1. Estimate unknowns \(\theta\) using training data \((X_1, Y_1), \ldots, (X_n, Y_n)\).

2. Plug estimate \(\hat{\theta}\) into formula for optimal predictor.

E.g., for “Two Galton boards” model: with \(\hat{\theta} = (\hat{p}, \hat{\mu}_0, \hat{\mu}_1, \hat{\sigma}_0^2, \hat{\sigma}_1^2)\), form predictor \(\hat{f}\) given by

\[
\hat{f}(x) := \arg \max_{y \in \{0, 1\}} \hat{p}^y (1 - \hat{p})^{1-y} \cdot \frac{1}{\sqrt{2\pi \hat{\sigma}_y^2}} \exp \left(-\frac{(x - \hat{\mu}_y)^2}{2\hat{\sigma}_y^2} \right).
\]

We call \(\hat{f}\) a *plug-in predictor*.
IID model: \textit{training data} \((X_1, Y_1), \ldots, (X_n, Y_n)\) and \textit{test example} \((X, Y)\) are \(n + 1\) iid pairs from probability distribution \(P_{\theta}\) with parameter vector \(\theta\).

1. Estimate unknowns \(\theta\) using training data \((X_1, Y_1), \ldots, (X_n, Y_n)\).

2. Plug estimate \(\hat{\theta}\) into formula for optimal predictor.

E.g., for “Two Galton boards” model: with \(\hat{\theta} = (\hat{p}, \hat{\mu}_0, \hat{\mu}_1, \hat{\sigma}_0^2, \hat{\sigma}_1^2)\), form predictor \(\hat{f}\) given by

\[
\hat{f}(x) := \arg \max_{y \in \{0, 1\}} \hat{p}^y (1 - \hat{p})^{1-y} \cdot \frac{1}{\sqrt{2\pi\hat{\sigma}_y^2}} \exp \left(-\frac{(x - \hat{\mu}_y)^2}{2\hat{\sigma}_y^2} \right).
\]

We call \(\hat{f}\) a \textit{plug-in predictor}.

3. Prediction of \(Y\) given \(X\):

\[
\hat{Y} := \hat{f}(X).
\]
Parametric statistical model:
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.
Maximum likelihood estimation

Parametric statistical model:
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.

- \(\Theta \): parameter space.
Maximum likelihood estimation

Parametric statistical model:
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.

- \(\Theta \): parameter space.
- \(\theta \in \Theta \): a particular parameter vector.
Maximum likelihood estimation

Parametric statistical model::
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.

- \(\Theta \): parameter space.
- \(\theta \in \Theta \): a particular parameter vector.
- \(P_\theta \): a particular probability distribution for observed data.

Likelihood of \(\theta \in \Theta \) given observed data:
\[L(\theta) := P_\theta(z) \]

Maximum likelihood estimator (MLE):
Let \(\hat{\theta} \) be the \(\theta \in \Theta \) of highest likelihood given observed data.
Parametric statistical model:
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.

- \(\Theta \): parameter space.
- \(\theta \in \Theta \): a particular parameter vector.
- \(P_\theta \): a particular probability distribution for observed data.

Likelihood of \(\theta \in \Theta \) given observed data \(z \):
\[
\mathcal{L}(\theta) := P_\theta(z).
\]
Maximum likelihood estimation

Parametric statistical model:
\[\mathcal{P} = \{ P_\theta : \theta \in \Theta \} \], a collection of probability distributions for observed data.

- \(\Theta \): parameter space.
- \(\theta \in \Theta \): a particular parameter vector.
- \(P_\theta \): a particular probability distribution for observed data.

Likelihood of \(\theta \in \Theta \) given observed data \(z \):
\[
\mathcal{L}(\theta) := P_\theta(z).
\]

Maximum likelihood estimator (MLE):
Let \(\hat{\theta} \) be the \(\theta \in \Theta \) of highest likelihood given observed data.
MLE for “Two Galton boards” model

\[\mathcal{P} = \text{distributions on } (X_1, Y_1), \ldots, (X_n, Y_n) \text{ treated as iid and} \]

\[Y_i \sim \text{Bern}(p); \quad X_i \mid Y_i = y \sim \text{N} (\mu_y, \sigma^2_y) \quad \text{for each } y \in \{0, 1\}. \]
MLE for “Two Galton boards” model

\[\mathcal{P} = \text{distributions on } (X_1, Y_1), \ldots, (X_n, Y_n) \text{ treated as iid and} \]

\[Y_i \sim \text{Bern}(p); \quad X_i \mid Y_i = y \sim \text{N}(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

1. \(\Theta = \{ \theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) : 0 \leq p \leq 1; \mu_0, \mu_1 \in \mathbb{R}; \sigma_0^2, \sigma_1^2 > 0 \}. \]
MLE for “Two Galton boards” model

\(\mathcal{P} = \text{distributions on } (X_1, Y_1), \ldots, (X_n, Y_n) \text{ treated as iid and} \)

\[Y_i \sim \text{Bern}(p); \quad X_i \mid Y_i = y \sim \text{N}(\mu_y, \sigma^2_y) \quad \text{for each } y \in \{0, 1\}. \]

1. \(\Theta = \{ \theta = (p, \mu_0, \mu_1, \sigma^2_0, \sigma^2_1) : 0 \leq p \leq 1; \mu_0, \mu_1 \in \mathbb{R}; \sigma^2_0, \sigma^2_1 > 0 \} \).

2. Likelihood of \(\theta = (p, \mu_0, \mu_1, \sigma^2_0, \sigma^2_1) \) given data

\(((X_1, Y_1), \ldots, (X_n, Y_n)) = ((x_1, y_1), \ldots, (x_n, y_n)):\)

\[
\mathcal{L}(\theta) = \prod_{i=1}^{n} \left\{ \left((1 - p) \cdot \frac{1}{\sqrt{2\pi\sigma^2_0}} \exp\left(-\frac{(x_i - \mu_0)^2}{2\sigma^2_0} \right) \right)^{1-y_i} \right. \\
\left. \quad \cdot \left(p \cdot \frac{1}{\sqrt{2\pi\sigma^2_1}} \exp\left(-\frac{(x_i - \mu_1)^2}{2\sigma^2_1} \right) \right)^{y_i} \right\}.
\]
MLE for “Two Galton boards” model

\[\mathcal{P} = \text{distributions on } (X_1, Y_1), \ldots, (X_n, Y_n) \text{ treated as iid and} \]

\[Y_i \sim \text{Bern}(p); \quad X_i | Y_i = y \sim N(\mu_y, \sigma_y^2) \quad \text{for each } y \in \{0, 1\}. \]

1. \[\Theta = \{ \theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) : 0 \leq p \leq 1; \mu_0, \mu_1 \in \mathbb{R}; \sigma_0^2, \sigma_1^2 > 0 \}. \]

2. Likelihood of \(\theta = (p, \mu_0, \mu_1, \sigma_0^2, \sigma_1^2) \) given data

\(((X_1, Y_1), \ldots, (X_n, Y_n)) = ((x_1, y_1), \ldots, (x_n, y_n)) \):

\[\mathcal{L}(\theta) = \prod_{i=1}^{n} \left\{ \left(1 - p\right) \cdot \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left(-\frac{(x_i - \mu_0)^2}{2\sigma_0^2}\right) \right\}^{1-y_i} \]

\[\cdot \left\{ p \cdot \frac{1}{\sqrt{2\pi\sigma_1^2}} \exp\left(-\frac{(x_i - \mu_1)^2}{2\sigma_1^2}\right) \right\}^{y_i} \].

3. Using calculus, we find that the maximizing value of \(\theta \) is given by

\[\hat{p} := \frac{|S_1|}{n}, \quad \hat{\mu}_0 := \text{Sample Mean}(S_0), \quad \hat{\mu}_1 := \text{Sample Mean}(S_1), \]

\[\hat{\sigma}_0^2 := \text{Sample Variance}(S_0), \quad \hat{\sigma}_1^2 := \text{Sample Variance}(S_1), \]

where \(S_0 := \{x_i : y_i = 0\} \) and \(S_1 := \{x_i : y_i = 1\} \).
Plug-in predictor:

\[
\hat{f}(x) = \begin{cases}
1 & \text{if } x \in [0.38, 2.29]; \\
0 & \text{otherwise.}
\end{cases}
\]

Dotted lines = decision boundary.

(Here, \(\hat{\pi}_0 = 1 - \hat{p} \) and \(\hat{\pi}_1 = \hat{p} \).)
Generative models for classification

A **generative model for classification** has the following components:

- **Distribution of** Y: **class prior**

 E.g., categorical distribution specified by $\pi_y = P(Y = y)$ for each $y \in \mathcal{Y}$.
A generative model for classification has the following components:

- Distribution of Y: **class prior**

 E.g., categorical distribution specified by $\pi_y = \mathbb{P}(Y = y)$ for each $y \in \mathcal{Y}$.

- Conditional distributions of X given Y: **class conditional distributions**

 E.g., $X \mid Y = y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ for each $y \in \mathcal{Y}$.

Parameter estimation:

When class prior & class conditional distributions have disjoint parameters — e.g., $\theta = (\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K)$ — then MLE $\hat{\theta}$ decomposes as follows:

- $\hat{\pi}_1, \ldots, \hat{\pi}_K$: MLE for (π_1, \ldots, π_K) given (y_1, \ldots, y_n) (i.e., $\hat{\pi}_1, \ldots, \hat{\pi}_K$ only depends on labels).

- $\hat{\theta}_y$: MLE for θ_y given $(x_i: y_i = y)$, for each $y \in \mathcal{Y}$ (i.e., $\hat{\theta}_y$ only depends on x_i's with label y).
A **generative model for classification** has the following components:

- **Distribution of Y: class prior**

 E.g., categorical distribution specified by $\pi_y = P(Y = y)$ for each $y \in \mathcal{Y}$.

- **Conditional distributions of X given Y: class conditional distributions**

 E.g., $X \mid Y = y \sim N(\mu_y, \sigma_y^2)$ for each $y \in \mathcal{Y}$.

Parameter estimation:

When class prior & class conditional distributions have disjoint parameters — e.g., $\theta = (\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K)$ — then MLE $\hat{\theta} = (\hat{\pi}_1, \ldots, \hat{\pi}_K, \hat{\theta}_1, \ldots, \hat{\theta}_K)$ given data $((x_1, y_1), \ldots, (x_n, y_n))$ decomposes as follows:
A **generative model for classification** has the following components:

- Distribution of Y: **class prior**

 E.g., categorical distribution specified by $\pi_y = \mathbb{P}(Y = y)$ for each $y \in \mathcal{Y}$.

- Conditional distributions of X given Y: **class conditional distributions**

 E.g., $X \mid Y = y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ for each $y \in \mathcal{Y}$.

Parameter estimation:

When class prior & class conditional distributions have disjoint parameters — e.g., $\theta = (\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K)$ — then MLE $\hat{\theta} = (\hat{\pi}_1, \ldots, \hat{\pi}_K, \hat{\theta}_1, \ldots, \hat{\theta}_K)$ given data $((x_1, y_1), \ldots, (x_n, y_n))$ decomposes as follows:

- $(\hat{\pi}_1, \ldots, \hat{\pi}_K)$: MLE for (π_1, \ldots, π_K) given (y_1, \ldots, y_n)

 (i.e., $(\hat{\pi}_1, \ldots, \hat{\pi}_K)$ only depends on labels).

- $\hat{\theta}_y$: MLE for θ_y given $(x_i : y_i = y)$, for each $y \in \mathcal{Y}$

 (i.e., $\hat{\theta}_y$ only depends on x_i's with label y).
A generative model for classification has the following components:

- **Distribution of Y**: class prior

 E.g., categorical distribution specified by $\pi_y = P(Y = y)$ for each $y \in \mathcal{Y}$.

- **Conditional distributions of X given Y**: class conditional distributions

 E.g., $X \mid Y = y \sim N(\mu_y, \sigma_y^2)$ for each $y \in \mathcal{Y}$.

Parameter estimation:

When class prior & class conditional distributions have disjoint parameters — e.g., $\theta = (\pi_1, \ldots, \pi_K, \theta_1, \ldots, \theta_K)$ — then MLE $\hat{\theta} = (\hat{\pi}_1, \ldots, \hat{\pi}_K, \hat{\theta}_1, \ldots, \hat{\theta}_K)$ given data $((x_1, y_1), \ldots, (x_n, y_n))$ decomposes as follows:

- $(\hat{\pi}_1, \ldots, \hat{\pi}_K)$: MLE for (π_1, \ldots, π_K) given (y_1, \ldots, y_n)

 (i.e., $(\hat{\pi}_1, \ldots, \hat{\pi}_K)$ only depends on labels).

- $\hat{\theta}_y$: MLE for θ_y given $(x_i : y_i = y)$, for each $y \in \mathcal{Y}$

 (i.e., $\hat{\theta}_y$ only depends on x_i's with label y).

Proof on next slide.
Decomposability of MLE for generative models

Log-likelihood of \(\pi \) and \((\theta_y : y \in \mathcal{Y})\):

\[
\log \prod_{i=1}^{n} \prod_{y \in \mathcal{Y}} \left[\pi_y \cdot \mathbb{P}_{\theta_y}(X = x_i) \right] 1\{y_i = y\}
\]
Decomposability of MLE for generative models

Log-likelihood of π and $(\theta_y : y \in \mathcal{Y})$:

$$
\log \prod_{i=1}^n \prod_{y \in \mathcal{Y}} \left[\pi_y \cdot \mathbb{P}_{\theta_y}(X = x_i) \right] 1\{y_i = y\}
$$

$$
= \sum_{i=1}^n \sum_{y \in \mathcal{Y}} \left[1\{y_i = y\} \log \pi_y + 1\{y_i = y\} \log \mathbb{P}_{\theta_y}(X = x_i) \right]
$$
Decomposability of MLE for generative models

Log-likelihood of π and $(\theta_y : y \in \mathcal{Y})$:

$$\log \prod_{i=1}^{n} \left(\prod_{y \in \mathcal{Y}} [\pi_y \cdot \mathbb{P}_{\theta_y}(X = x_i)] \right) \mathbb{1}\{y_i = y\}$$

$$= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \left[\mathbb{1}\{y_i = y\} \log \pi_y + \mathbb{1}\{y_i = y\} \log \mathbb{P}_{\theta_y}(X = x_i) \right]$$

$$= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \mathbb{1}\{y_i = y\} \log \pi_y + \sum_{y \in \mathcal{Y}} \sum_{x_i : y_i = y} \log \mathbb{P}_{\theta_y}(X = x_i)$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \mathbb{1}\{y_i = y\} \log \pi_y}_{(T_\pi)} + \underbrace{\sum_{y \in \mathcal{Y}} \sum_{x_i : y_i = y} \log \mathbb{P}_{\theta_y}(X = x_i)}_{(T_y)}$$
Decomposability of MLE for generative models

Log-likelihood of π and $(\theta_y : y \in \mathcal{Y})$:

$$
\log \prod_{i=1}^{n} \prod_{y \in \mathcal{Y}} \left[\pi_y \cdot P_{\theta_y}(X = x_i) \right] \mathbb{1}\{y_i = y\} =
\sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \left[\mathbb{1}\{y_i = y\} \log \pi_y + \mathbb{1}\{y_i = y\} \log P_{\theta_y}(X = x_i) \right] =
\sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \mathbb{1}\{y_i = y\} \log \pi_y + \sum_{y \in \mathcal{Y}} \sum_{x_i : y_i = y} \log P_{\theta_y}(X = x_i)
$$

- π only involved in term T_π, which is log-likelihood given (y_1, \ldots, y_n).
- θ_y only involved in term T_y, which is log-likelihood given $(x_i : y_i = y)$.

These terms (T_π and T_y for each $y \in \mathcal{Y}$) can be maximized separately to maximize the overall log-likelihood objective.
Decomposability of MLE for generative models

Log-likelihood of π and $(\theta_y : y \in \mathcal{Y})$:

$$
\log \prod_{i=1}^{n} \prod_{y \in \mathcal{Y}} \left[\pi_y \cdot \mathbb{P}_{\theta_y}(X = x_i) \right]^{1 \{y_i = y\}}
$$

$$
= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \left[1 \{y_i = y\} \log \pi_y + 1 \{y_i = y\} \log \mathbb{P}_{\theta_y}(X = x_i) \right]
$$

$$
= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} 1 \{y_i = y\} \log \pi_y + \sum_{y \in \mathcal{Y}} \sum_{x_i : y_i = y} \log \mathbb{P}_{\theta_y}(X = x_i)
$$

- π only involved in term T_π, which is log-likelihood given (y_1, \ldots, y_n).
- θ_y only involved in term T_y, which is log-likelihood given $(x_i : y_i = y)$.
Log-likelihood of π and $(\theta_y : y \in \mathcal{Y})$:

$$
\log \prod_{i=1}^{n} \prod_{y \in \mathcal{Y}} [\pi_y \cdot \mathbb{P}_{\theta_y}(X = x_i)] \mathbb{1}_{\{y_i = y\}}
$$

$$
= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} [\mathbb{1}_{\{y_i = y\}} \log \pi_y + \mathbb{1}_{\{y_i = y\}} \log \mathbb{P}_{\theta_y}(X = x_i)]
$$

$$
= \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \mathbb{1}_{\{y_i = y\}} \log \pi_y + \sum_{y \in \mathcal{Y}} \sum_{x_i : y_i = y} \log \mathbb{P}_{\theta_y}(X = x_i)
$$

- π only involved in term T_π, which is log-likelihood given (y_1, \ldots, y_n).
- θ_y only involved in term T_y, which is log-likelihood given $(x_i : y_i = y)$.

These terms (T_π and T_y for each $y \in \mathcal{Y}$) can be maximized separately to maximize the overall log-likelihood objective.
3. Naïve Bayes models
Naïve Bayes

Suppose $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, \ldots, K\}$, i.e., side-information $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ is d numerical features.
Naïve Bayes

Suppose \(\mathcal{X} = \mathbb{R}^d \) and \(\mathcal{Y} = \{1, \ldots, K\} \), i.e., side-information \(\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d \) is \(d \) numerical features.

Naïve Bayes: generative model where class conditional distributions treat features as independent.

\[
P(\mathbf{X} = \mathbf{x} \mid Y = y) = \prod_{j=1}^{d} P(X_j = x_j \mid Y = y).
\]
Naïve Bayes

Suppose $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, \ldots, K\}$, i.e., side-information $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ is d numerical features.

Naïve Bayes: generative model where class conditional distributions treat features as independent.

$$
\mathbb{P}(\mathbf{X} = \mathbf{x} \mid Y = y) = \prod_{j=1}^{d} \mathbb{P}(X_j = x_j \mid Y = y).
$$

Special case: Naïve Bayes with binary features ($\mathcal{X} = \{0, 1\}^d$):

$$
X_j \mid Y = y \sim \text{Bern}(\mu_{y,j}). \quad \text{(coin toss)}
$$
Naïve Bayes

Suppose $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, \ldots, K\}$, i.e., side-information $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ is d numerical features.

Naïve Bayes: generative model where class conditional distributions treat features as independent.

$$P(\mathbf{X} = \mathbf{x} \mid Y = y) = \prod_{j=1}^{d} P(X_j = x_j \mid Y = y).$$

Special case: Naïve Bayes with binary features ($\mathcal{X} = \{0, 1\}^d$):

$$X_j \mid Y = y \sim \text{Bern}(\mu_{y,j}). \quad \text{(coin toss)}$$

E.g., $x_1 = 1\{\text{length > 1 meter}\}$, $x_2 = 1\{\text{tastes fishy}\}$, ...
Naïve Bayes

Suppose $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{1, \ldots, K\}$, i.e., side-information $\mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d$ is d numerical features.

Naïve Bayes: generative model where class conditional distributions treat features as independent.

$$
\mathbb{P}(\mathbf{X} = \mathbf{x} \mid Y = y) = \prod_{j=1}^{d} \mathbb{P}(X_j = x_j \mid Y = y).
$$

Special case: Naïve Bayes with binary features ($\mathcal{X} = \{0, 1\}^d$):

$$
X_j \mid Y = y \sim \text{Bern}(\mu_{y,j}). \quad \text{(coin toss)}
$$

E.g., $x_1 = 1\{\text{length} > 1 \text{ meter}\}$, $x_2 = 1\{\text{tastes fishy}\}$, ...

Model parameters:

1. Class priors: $\boldsymbol{\pi} = (\pi_1, \pi_2, \ldots, \pi_K)$.

2. Class conditionals: $\boldsymbol{\mu}_y = (\mu_{y,1}, \mu_{y,2}, \ldots, \mu_{y,d})$ for each $y \in \{1, \ldots, K\}$.
What is the form of Bayes classifier for a Naïve Bayes distribution?

Let \(\pi, \mu_1, \ldots, \mu_K \) be the parameters of the distribution.

\[
\arg \max_{y \in \{1, \ldots, K\}} \log \left(\pi_y \cdot \prod_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j} \right) = \arg \max_{y \in \{1, \ldots, K\}} \log \left(\frac{\pi_y}{\sum_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j}} \right) + \sum_{j=1}^{d} \log \left[\frac{\mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j}}{\sum_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j}} \right].
\]

"Score" for class \(y \) is an affine function of \(x \).

Can pre-compute coefficients to speed-up classifier evaluation.
What is the form of Bayes classifier for a Naïve Bayes distribution?

Let \(\pi, \mu_1, \ldots, \mu_K \) be the parameters of the distribution.
What is the form of Bayes classifier for a Naïve Bayes distribution?

Let $\pi, \mu_1, \ldots, \mu_K$ be the parameters of the distribution.

$$f^*(x) = \arg \max_{y \in \{1, \ldots, K\}} \log (\mathbb{P}(Y = y) \cdot \mathbb{P}(X = x \mid Y = y))$$
What is the form of Bayes classifier for a Naïve Bayes distribution?

Let $\pi, \mu_1, \ldots, \mu_K$ be the parameters of the distribution.

$$f^*(x) = \arg \max_{y \in \{1, \ldots, K\}} \log \left(\pi_y \cdot \prod_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j} \right)$$

"Score" for class y is an affine function of x.

Can pre-compute coefficients to speed-up classifier evaluation.
Structure of Naïve Bayes classifiers

What is the form of Bayes classifier for a Naïve Bayes distribution?
Let $\pi, \mu_1, \ldots, \mu_K$ be the parameters of the distribution.

\[
 f^*(x) = \arg \max_{y \in \{1, \ldots, K\}} \log \left(\pi_y \cdot \prod_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j} \right)
\]

\[
 = \arg \max_{y \in \{1, \ldots, K\}} \log \left(\pi_y \prod_{j=1}^{d} (1 - \mu_{y,j}) \right) + \sum_{j=1}^{d} \log \left[\frac{\mu_{y,j}}{1 - \mu_{y,j}} \right] \cdot x_j.
\]
What is the form of Bayes classifier for a Naïve Bayes distribution?

Let $\pi, \mu_1, \ldots, \mu_K$ be the parameters of the distribution.

\[
f^*(x) = \arg\max_{y \in \{1, \ldots, K\}} \log \left(\pi_y \cdot \prod_{j=1}^{d} \mu_{y,j}^{x_j} (1 - \mu_{y,j})^{1-x_j} \right)
\]

\[
= \arg\max_{y \in \{1, \ldots, K\}} \log \left[\pi_y \prod_{j=1}^{d} (1 - \mu_{y,j}) \right] + \sum_{j=1}^{d} \log \left[\frac{\mu_{y,j}}{1 - \mu_{y,j}} \right] \cdot x_j.
\]

“Score” for class y is an affine function of x.

Can pre-compute coefficients to speed-up classifier evaluation.
Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\) be the training data.
Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\) be the training data.

MLE for \(\theta = (\pi, \mu_1, \ldots, \mu_K)\):

\[
\hat{\pi}_y := \frac{|S_y|}{n},
\]

\[
\hat{\mu}_{y,j} := \frac{\sum_{x \in S_y} x_j}{|S_y|} \quad \text{for each } j = 1, \ldots, d.
\]

where \(S_y := (x^{(i)} : y^{(i)} = y)\) for each \(y \in \{1, \ldots, K\}\).
Let \((\mathbf{x}^{(1)}, y^{(1)}), \ldots, (\mathbf{x}^{(n)}, y^{(n)})\) be the training data.

MLE for \(\theta = (\pi, \mu_1, \ldots, \mu_K)\):

\[
\hat{\pi}_y := \frac{|S_y|}{n},
\]

\[
\hat{\mu}_{y,j} := \frac{\sum_{\mathbf{x}^{(i)} \in S_y} x^{(i)}_j}{|S_y|} \quad \text{for each } j = 1, \ldots, d.
\]

where \(S_y := (\mathbf{x}^{(i)} : y^{(i)} = y)\) for each \(y \in \{1, \ldots, K\}\).

Caveat: MLE is not a good estimator when \(\hat{\mu}_{y,j}\) turns out to be 0 or 1.
Let \((x^{(1)}, y^{(1)}), \ldots, (x^{(n)}, y^{(n)})\) be the training data.

MLE for \(\theta = (\pi, \mu_1, \ldots, \mu_K)\):

\[
\hat{\pi}_y := \frac{|S_y|}{n},
\]

\[
\hat{\mu}_{y,j} := \frac{\sum_{x(i) \in S_y} x_j^{(i)}}{|S_y|} \quad \text{for each} \ j = 1, \ldots, d.
\]

where \(S_y := (x^{(i)} : y^{(i)} = y)\) for each \(y \in \{1, \ldots, K\}\).

Caveat: MLE is not a good estimator when \(\hat{\mu}_{y,j}\) turns out to be 0 or 1.

Alternative to MLE: *Laplace smoothing* estimate

\[
\hat{\mu}_{y,j} := \frac{1 + \sum_{x(i) \in S_y} x_j^{(i)}}{2 + |S_y|} \in (0, 1).
\]
Example: 20 Newsgroups

Data set: “20 Newsgroups”
Data set: “20 Newsgroups”

- $\approx 11 \times 10^3$ messages from 20 message boards.
 (“alt.atheism”, “comp.graphics”, “comp.os-ms-windows.misc”, …)
Example: 20 Newsgroups

Data set: “20 Newsgroups”

- $\approx 11 \times 10^3$ messages from 20 message boards.
 - (“alt.atheism”, “comp.graphics”, “comp.os-ms-windows.misc”, …)
- Extract vocabulary of $d = 61188$ unique words.
 - (“archive”, “name”, “atheism”, “resources”, …)
Example: 20 Newsgroups

Data set: “20 Newsgroups”

- $\approx 11 \times 10^3$ messages from 20 message boards.
 (”alt.atheism”, “comp.graphics”, “comp.os-ms-windows.misc”, ...)
- Extract vocabulary of $d = 61188$ unique words.
 (”archive”, “name”, “atheism”, “resources”, ...)
- Represent each message as a binary vector $x \in \{0, 1\}^d$:
 \[x_i = \mathbb{1}\{\text{message contains the } i\text{-th vocabulary word}\} \]
 E.g., $x_1 = \mathbb{1}\{\text{message contains “archive”}\}$.
Example: 20 Newsgroups

Data set: “20 Newsgroups”

- Approximately 11×10^3 messages from 20 message boards.
 - (“alt.atheism”, “comp.graphics”, “comp.os-ms-windows.misc”, …)
- Extract vocabulary of $d = 61188$ unique words.
 - (“archive”, “name”, “atheism”, “resources”, …)
- Represent each message as a binary vector $x \in \{0, 1\}^d$:
 \[
 x_i = \mathbb{1}\{\text{message contains the } i\text{-th vocabulary word}\}
 \]
 E.g., $x_1 = \mathbb{1}\{\text{message contains “archive”}\}$.

Goal: Given a message (with message headers removed), predict which of the 20 message boards it was posted to.
Example: 20 Newsgroups

Data set: “20 Newsgroups”

- $\approx 11 \times 10^3$ messages from 20 message boards.
 - ("alt.atheism", “comp.graphics”, “comp.os-ms-windows.misc”, …)
- Extract vocabulary of $d = 61188$ unique words.
 - ("archive", “name”, “atheism”, “resources”, …)
- Represent each message as a binary vector $x \in \{0, 1\}^d$:

 $$x_i = \mathbb{1}\{\text{message contains the } i\text{-th vocabulary word}\}$$

 E.g., $x_1 = \mathbb{1}\{\text{message contains “archive”}\}$.

Goal: Given a message (with message headers removed), predict which of the 20 message boards it was posted to.

We’ll fit the Naïve Bayes model (with MLE+Laplace smoothing) to this data.
Naïve Bayes predictor:

\[
\hat{f}(x) = \arg \max_{y \in \{1, \ldots, 20\}} \log \left[\hat{\pi}_y \prod_{j=1}^d (1 - \hat{\mu}_{y,j}) \right] + \sum_{j=1}^d \log \left[\frac{\hat{\mu}_{y,j}}{1 - \hat{\mu}_{y,j}} \right] \cdot x_j
\]
Naïve Bayes predictor:

\[
\hat{f}(x) = \arg \max_{y \in \{1, \ldots, 20\}} \log \left(\hat{\pi}_y \prod_{j=1}^{d} (1 - \hat{\mu}_{y,j}) \right) + \sum_{j=1}^{d} \log \left(\frac{\hat{\mu}_{y,j}}{1 - \hat{\mu}_{y,j}} \right) \cdot x_j
\]

- The 29-th word in the vocabulary is “the”. What do you think \(\hat{\mu}_{y,29}\) is?
Naïve Bayes predictor:

\[
\hat{f}(x) = \arg\max_{y \in \{1, \ldots, 20\}} \log \left[\hat{\pi}_y \prod_{j=1}^{d} (1 - \hat{\mu}_{y,j}) \right] + \sum_{j=1}^{d} \log \left[\frac{\hat{\mu}_{y,j}}{1 - \hat{\mu}_{y,j}} \right] \cdot x_j
\]

- The 29-th word in the vocabulary is “the”. What do you think \(\hat{\mu}_{y,29}\) is?

(Probably should’ve removed stop words before fitting model. Oh well!)
Example: 20 Newsgroups (continued)

Naïve Bayes predictor:

\[
\hat{f}(x) = \arg \max_{y \in \{1, \ldots, 20\}} \log \left(\hat{\pi}_y \prod_{j=1}^{d} (1 - \hat{\mu}_{y,j}) \right) + \sum_{j=1}^{d} \log \left[\frac{\hat{\mu}_{y,j}}{1 - \hat{\mu}_{y,j}} \right] \cdot x_j
\]

▶ The 29-th word in the vocabulary is “the”. What do you think \(\hat{\mu}_{y,29}\) is?

(Probably should’ve removed stop words before fitting model. Oh well!)

▶ Class 1 is “alt.atheism”; class 17 is “talk.politics.guns”. 38733-th word in vocabulary is “firearms”.

\[
\hat{\mu}_{1,38733} \approx 0.0021, \quad \hat{\mu}_{17,38733} \approx 0.1901
\]

so

\[
\log \left[\frac{\hat{\mu}_{17,38733}}{1 - \hat{\mu}_{17,38733}} \right] - \log \left[\frac{\hat{\mu}_{1,38733}}{1 - \hat{\mu}_{1,38733}} \right] \approx 4.7267.
\]
Naïve Bayes predictor:

\[
\hat{f}(x) = \arg \max_{y \in \{1, \ldots, 20\}} \log \left(\hat{\pi}_y \prod_{j=1}^{d} (1 - \hat{\mu}_{y,j}) \right) + \sum_{j=1}^{d} \log \left(\frac{\hat{\mu}_{y,j}}{1 - \hat{\mu}_{y,j}} \right) \cdot x_j
\]

- The 29-th word in the vocabulary is “the”. What do you think \(\hat{\mu}_{y,29}\) is?

(Probably should’ve removed stop words before fitting model. Oh well!)

- Class 1 is “alt.atheism”; class 17 is “talk.politics.guns”. 38733-th word in vocabulary is “firearms”.

\[
\hat{\mu}_{1,38733} \approx 0.0021, \quad \hat{\mu}_{17,38733} \approx 0.1901
\]

so

\[
\log \left[\frac{\hat{\mu}_{17,38733}}{1 - \hat{\mu}_{17,38733}} \right] - \log \left[\frac{\hat{\mu}_{1,38733}}{1 - \hat{\mu}_{1,38733}} \right] \approx 4.7267.
\]

- On separate collection of \(7.5 \times 10^3\) messages, get test error rate of 37.6\%.
Problems with Naïve Bayes

Features typically not independent (even conditional on class label).
▶ E.g., \(x_1 = \text{height}, \ x_2 = \text{weight} \).
Features typically not independent (even conditional on class label).

- E.g., $x_1 =$ height, $x_2 =$ weight.

Alternative: use statistical models that model dependencies between features. E.g., multivariate Gaussian distributions.
4. Multivariate Gaussian distributions
Standard normal (Gaussian) distribution on \mathbb{R}^1

$X \sim N(0, 1)$, density

$$
\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \text{ for all } x \in \mathbb{R}.
$$
Standard Gaussian distributions on \mathbb{R}^d

Standard normal (Gaussian) distribution on \mathbb{R}^1

$X \sim N(0, 1)$, density

$$\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right) \quad \text{for all } x \in \mathbb{R}. $$

Standard normal (Gaussian) distribution on \mathbb{R}^d

$X = (X_1, X_2, \ldots, X_d) \sim N(0, I)$, density

$$\varphi_{0,I}(x) = \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x_i^2}{2} \right) \quad \text{for all } x = (x_1, \ldots, x_d) \in \mathbb{R}^d.$$
Standard normal (Gaussian) distribution on \mathbb{R}^1

$X \sim N(0, 1)$, density

$$
\varphi_{0,1}(x) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right) \quad \text{for all } x \in \mathbb{R}.
$$

Standard normal (Gaussian) distribution on \mathbb{R}^d

$X = (X_1, X_2, \ldots, X_d) \sim N(0, I)$, density

$$
\varphi_{0,I}(\mathbf{x}) = \prod_{i=1}^{d} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x_i^2}{2} \right) \quad \text{for all } \mathbf{x} = (x_1, \ldots, x_d) \in \mathbb{R}^d.
$$

Usually written as

$$
\varphi_{0,I}(\mathbf{x}) = \frac{1}{(2\pi)^{d/2}} \exp \left(-\frac{||\mathbf{x}||^2}{2} \right).
$$
Standard normal (Gaussian) distribution on \mathbb{R}^d
Standard normal (Gaussian) distribution on \mathbb{R}^d

Contours of equal standard normal density in \mathbb{R}^2
Standard normal (Gaussian) distribution on \mathbb{R}^d

- $\mathbb{E}(X_i) = 0$

Contours of equal standard normal density in \mathbb{R}^2
Standard normal (Gaussian) distribution on \mathbb{R}^d

- $\mathbb{E}(X_i) = 0$
- $\text{var}(X_i) = \text{cov}(X_i, X_i) = 1$

Contours of equal standard normal density in \mathbb{R}^2
Standard normal (Gaussian) distribution on \mathbb{R}^d

- $\mathbb{E}(X_i) = 0$
- $\text{var}(X_i) = \text{cov}(X_i, X_i) = 1$
- $\text{cov}(X_i, X_j) = 0$ for $i \neq j$.

Contours of equal standard normal density in \mathbb{R}^2
Standard normal (Gaussian) distribution on \mathbb{R}^d

- $\mathbb{E}(X_i) = 0$
- $\text{var}(X_i) = \text{cov}(X_i, X_i) = 1$
- $\text{cov}(X_i, X_j) = 0$ for $i \neq j$.

Arrange means into a vector and covariances in a $d \times d$ matrix:

$\mathbb{E}(X) = 0$, $\text{cov}(X) = I$

(zero vector and identity matrix).

Contours of equal standard normal density in \mathbb{R}^2
General Gaussian distributions on \mathbb{R}^d

(General) Gaussian distributions on \mathbb{R}^d come from applying two operations to another (e.g., the standard) Gaussian distribution:

\[x \mapsto Ax \mapsto Ax + \mu \]

for some vector $\mu \in \mathbb{R}^d$ and invertible linear map $A \in \mathbb{R}^{d \times d}$.

Fact: Let $\mu \in \mathbb{R}^d$ be any vector, and $A \in \mathbb{R}^{d \times d}$ be any invertible matrix. For any random vector X in \mathbb{R}^d with $E(X) = 0$ and $\text{cov}(X) = I$, the random vector $Y = AX + \mu$ satisfies $E(Y) = \mu$, $\text{cov}(Y) = AA^T$. Furthermore, if $X \sim \mathcal{N}(0, I)$, then $Y \sim \mathcal{N}(\mu, AA^T)$.

Density for $X \sim \mathcal{N}(\mu, AA^T)$ for $\mu \in \mathbb{R}^d$ and symmetric positive definite matrix AA^T:

\[\phi_{\mu, AA^T}(x) = \frac{1}{(2\pi)^{d/2} |\det(AA^T)|^{1/2}} \exp\left(-\frac{1}{2} \|A^{-1}(x-\mu)\|_2^2\right) \]
(General) Gaussian distributions on \mathbb{R}^d come from applying two operations to another (e.g., the standard) Gaussian distribution:

$$\begin{align*}
\text{linear map} & \quad \{ \begin{aligned}
x & \mapsto Ax \\
Ax & \mapsto Ax + \mu
\end{aligned} \\
\text{translation} & \quad \text{for some vector } \mu \in \mathbb{R}^d \text{ and invertible linear map } A \in \mathbb{R}^{d \times d}.
\end{align*}$$

Fact: Let $\mu \in \mathbb{R}^d$ be any vector, and $A \in \mathbb{R}^{d \times d}$ be any invertible matrix. For any random vector X in \mathbb{R}^d with $\mathbb{E}(X) = 0$ and $\text{cov}(X) = I$, the random vector $Y = AX + \mu$ satisfies

$$\begin{align*}
\mathbb{E}(Y) &= \mu, \\
\text{cov}(Y) &= AA^T.
\end{align*}$$
(General) Gaussian distributions on \mathbb{R}^d come from applying two operations to another (e.g., the standard) Gaussian distribution:

$$x \mapsto Ax \mapsto Ax + \mu$$

for some vector $\mu \in \mathbb{R}^d$ and invertible linear map $A \in \mathbb{R}^{d \times d}$.

Fact: Let $\mu \in \mathbb{R}^d$ be any vector, and $A \in \mathbb{R}^{d \times d}$ be any invertible matrix. For any random vector X in \mathbb{R}^d with $\mathbb{E}(X) = 0$ and $\text{cov}(X) = I$, the random vector $Y = AX + \mu$ satisfies

$$\mathbb{E}(Y) = \mu, \quad \text{cov}(Y) = AA^T.$$

Furthermore, if $X \sim \mathcal{N}(0, I)$, then $Y \sim \mathcal{N}(\mu, AA^T)$.

Density for $X \sim \mathcal{N}(\mu, AA^T)$ for $\mu \in \mathbb{R}^d$ and symmetric positive definite matrix AA^T:

$$\phi_{\mu, AA^T}(x) = \frac{1}{(2\pi)^{d/2} \left| \det(AA^T) \right|^{1/2}} \exp \left(-\frac{1}{2} \|A^{-1}(x - \mu)\|^2_2 \right).$$
(General) Gaussian distributions on \mathbb{R}^d come from applying two operations to another (e.g., the standard) Gaussian distribution:

$$x \mapsto Ax \mapsto Ax + \mu$$

for some vector $\mu \in \mathbb{R}^d$ and invertible linear map $A \in \mathbb{R}^{d \times d}$.

Fact: Let $\mu \in \mathbb{R}^d$ be any vector, and $A \in \mathbb{R}^{d \times d}$ be any invertible matrix. For any random vector X in \mathbb{R}^d with $\mathbb{E}(X) = 0$ and $\text{cov}(X) = I$, the random vector $Y = AX + \mu$ satisfies

$$\mathbb{E}(Y) = \mu, \quad \text{cov}(Y) = AA^T.$$

Furthermore, if $X \sim N(0, I)$, then $Y \sim N(\mu, AA^T)$.

Density for $X \sim N(\mu, AA^T)$ for $\mu \in \mathbb{R}^d$ and symmetric pos. def. matrix AA^T:

$$\phi_{\mu, AA^T}(x) = \frac{1}{(2\pi)^{d/2}|\det(AA^T)|^{1/2}} \exp \left(-\frac{1}{2} \|A^{-1}(x - \mu)\|_2^2 \right).$$
Examples of linear maps

Write $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

1. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $Ax = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$.

2. If $A = \begin{bmatrix} 1 & \sqrt{2} \\ 1 & \sqrt{2} \\ 1 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $Ax = x_1 \begin{bmatrix} 1 & \sqrt{2} \\ 1 & \sqrt{2} \end{bmatrix} + 2x_2 \begin{bmatrix} 1 & \sqrt{2} \\ -1 & \sqrt{2} \end{bmatrix}$.

(Scale coordinates x_1 and x_2 by, respectively, 1 and 2. Coordinate scaling as above, followed by rotation.)
Examples of linear maps

Write \(x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \).

1. If \(A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \), then \(Ax = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix} \).

(Scale coordinates \(x_1 \) and \(x_2 \) by, respectively, 1 and 2.)
Examples of linear maps

Write $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

1. If $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $Ax = \begin{bmatrix} x_1 \\ 2x_2 \end{bmatrix}$.

 (Scale coordinates x_1 and x_2 by, respectively, 1 and 2.)

2. If $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$, then $Ax = x_1 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} + 2x_2 \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$.

 (Coordinate scaling as above, followed by rotation.)
General Gaussian distributions on \mathbb{R}^d

$X \sim N(\mu, AA^T)$

$\mu = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$

$\mu = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad A = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$
MLE for Gaussian parameters

\[P = \text{statistical model that treats } X_1, \ldots, X_n \text{ as iid } \mathcal{N}(\mu, \Sigma) \text{ random vectors.} \]
MLE for Gaussian parameters

\[\mathcal{P} = \text{statistical model that treats } X_1, \ldots, X_n \text{ as iid } N(\mu, \Sigma) \text{ random vectors.} \]

- MLE for \(\mu \) given \((X_1, \ldots, X_n) = (x_1, \ldots, x_n)\):

 sample mean

 \[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i. \]
\(\mathcal{P} = \) statistical model that treats \(X_1, \ldots, X_n \) as iid \(N(\mu, \Sigma) \) random vectors.

- MLE for \(\mu \) given \((X_1, \ldots, X_n) = (x_1, \ldots, x_n)\):

 sample mean

 \[
 \hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i.
 \]

- MLE for \(\Sigma \) given \((X_1, \ldots, X_n) = (x_1, \ldots, x_n)\):

 sample covariance

 \[
 \hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T
 \]

 where \(\hat{\mu} \) is the sample mean.

 (This assumes \(\hat{\Sigma} \) is invertible; if not, then MLE does not exist!)
Multivariate Gaussian class conditionals

Example: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$, and using multivariate Gaussian class conditional densities.
Multivariate Gaussian class conditionals

Example: $\mathcal{X} = \mathbb{R}^d$, $\mathcal{Y} = \{0, 1\}$, and using multivariate Gaussian class conditional densities.

Bayes classifier corresponding to distribution with parameters $\pi_0, \pi_1, \mu_0, \Sigma_0, \mu_1, \Sigma_1$:

\[
\Sigma_0 = \Sigma_1
\]

Bayes classifier: linear decision boundary

\[
\Sigma_0 \neq \Sigma_1
\]

Bayes classifier: quadratic decision boundary
Example: quadratic decision boundary

Suppose

- $\pi_0 = \pi_1 = 1/2$;
- $\mu_0 \neq \mu_1$;
- $\Sigma_0 = I$ and $\Sigma_1 = 0.01I$.

What is the shape of the decision boundary?
Example: Classifying irises by sepal measurements

- $\mathcal{X} = \mathbb{R}^1$, $\mathcal{Y} = \{1, 2, 3\}$
- $x_1 = \text{ratio of sepal length to width}$

Training data: 120 examples
Test data: 30 examples

Test error rate: 30%
Example: Classifying irises by petal measurements

- $\mathcal{X} = \mathbb{R}^1$, $\mathcal{Y} = \{1, 2, 3\}$
- $x_2 =$ ratio of petal length to width

Test data: 30 examples

Training data: 120 examples

Test error rate: 23.33%
Example: Classifying irises with both features

- \(\mathcal{X} = \mathbb{R}^2 \), \(\mathcal{Y} = \{1, 2, 3\} \)
- \(x_1 = \) ratio of sepal length to width
- \(x_2 = \) ratio of petal length to width

Training data: 120 examples
Test data: 30 examples

Test error rate: 16.67%
5. Beyond Gaussians
Beyond Gaussians: exponential families

Gaussians capture pairwise correlations between features: more powerful than Naïve Bayes, but still limited.

$p_\theta(x) \propto \exp(\theta^T \phi(x)) \nu(x)$

where $\phi(x) \in \mathbb{R}^p$ is the vector of p's sufficient statistics of data point x, and $\nu(x)$ is some “base” probability distribution.

Multivariate normal is special case where $\phi(x) = (x, \text{vec}(xx^T))$ so $p = d + d^2$.

Can consider other “sufficient statistics” that include higher-order interactions among features (e.g., three-way interaction $x_1 x_2 x_3$).

Very closely related to graphical models (see Dave Blei’s class).
Gaussians capture pairwise correlations between features: more powerful than Naïve Bayes, but still limited.

- To find distributions that capture other dependencies among features, consider exponential families:

\[
p_\theta(x) \propto \exp \left(\theta^T \phi(x) \right) \nu(x)
\]

where \(\phi(x) \in \mathbb{R}^p \) is the vector of \(p \) “sufficient statistics” of data point \(x \), and \(\nu \) is some “base” probability distribution.
Gaussians capture pairwise correlations between features: more powerful than Naïve Bayes, but still limited.

To find distributions that capture other dependencies among features, consider exponential families:

$$p_{\theta}(x) \propto \exp\left(\theta^T \phi(x)\right) \nu(x)$$

where $\phi(x) \in \mathbb{R}^p$ is the vector of p “sufficient statistics” of data point x, and ν is some “base” probability distribution.

Multivariate normal is special case where

$$\phi(x) = (x, \text{vec}(xx^T))$$

so $p = d + d^2$.
Gaussians capture pairwise correlations between features: more powerful than Naïve Bayes, but still limited.

To find distributions that capture other dependencies among features, consider exponential families:

\[p_\theta(x) \propto \exp \left(\theta^T \phi(x) \right) \nu(x) \]

where \(\phi(x) \in \mathbb{R}^p \) is the vector of \(p \) “sufficient statistics” of data point \(x \), and \(\nu \) is some “base” probability distribution.

Multivariate normal is special case where

\[\phi(x) = (x, \text{vec}(xx^T)) \]

so \(p = d + d^2 \).

Can consider other “sufficient statistics” that include higher-order interactions among features (e.g., three-way interaction \(x_1 x_2 x_3 \)).
Beyond Gaussians: exponential families

Gaussians capture pairwise correlations between features: more powerful than Naïve Bayes, but still limited.

To find distributions that capture other dependencies among features, consider exponential families:

\[p_\theta(x) \propto \exp \left(\theta^T \phi(x) \right) \nu(x) \]

where \(\phi(x) \in \mathbb{R}^p \) is the vector of \(p \) “sufficient statistics” of data point \(x \), and \(\nu \) is some “base” probability distribution.

Multivariate normal is special case where

\[\phi(x) = (x, \text{vec}(xx^T)) \]

so \(p = d + d^2 \).

Can consider other “sufficient statistics” that include higher-order interactions among features (e.g., three-way interaction \(x_1 x_2 x_3 \)).

Very closely related to graphical models (see Dave Blei’s class).
Beyond Gaussians: non-parametric methods

For most flexibility, use *non-parametric methods* to model density of X.

Example: kernel density estimator

$$
\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(x - x_i \right) h,
$$

where K is some radially-symmetric function on \mathbb{R}^d, e.g.,

$$
K(\delta) = \exp\left(-\|\delta\|^2 \right),
$$

and $h > 0$ is the bandwidth parameter.

Caveat: Non-parametric methods may not work well when d is large!

Caveat about caveat: Good classification performance does not necessarily require very accurate density estimation!
Beyond Gaussians: non-parametric methods

For most flexibility, use *non-parametric methods* to model density of X.

Example: kernel density estimator

$$
\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right),
$$

where K is some radially-symmetric function on \mathbb{R}^d, e.g., $K(\delta) = \exp(-\|\delta\|_2)$, and $h > 0$ is the *bandwidth* parameter.

Caveat: Non-parametric methods may not work well when d is large!

Caveat about caveat: good classification performance does not necessarily require very accurate density estimation!
Beyond Gaussians: non-parametric methods

For most flexibility, use *non-parametric methods* to model density of X.

Example: kernel density estimator

$$
\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right),
$$

where K is some radially-symmetric function on \mathbb{R}^d, e.g., $K(\delta) = \exp(-\|\delta\|_2)$, and $h > 0$ is the *bandwidth* parameter.

Caveat: Non-parametric methods may not work well when d is large!
Beyond Gaussians: non-parametric methods

For most flexibility, use *non-parametric methods* to model density of X.

Example: kernel density estimator

$$
\hat{p}(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - X_i}{h} \right),
$$

where K is some radially-symmetric function on \mathbb{R}^d, e.g., $K(\delta) = \exp(-\|\delta\|_2)$, and $h > 0$ is the *bandwidth* parameter.

Caveat: Non-parametric methods may not work well when d is large!

Caveat about caveat: good classification performance does not necessarily require very accurate density estimation!
Example: k-NN density estimator

$$
\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}
$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.
Example: k-NN density estimator

$$\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.

Main idea:
If probability density p of X is “smooth”, then probability mass of $B(x, r)$ (i.e., ball of radius r around x) is

$$\int_{B(x, r)} p(z) \, dz$$
Beyond Gaussians: non-parametric methods (continued)

Example: k-NN density estimator

$$
\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}
$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.

Main idea:
If probability density p of X is “smooth”, then probability mass of $B(x, r)$ (i.e., ball of radius r around x) is

$$
\int_{B(x, r)} p(z) \, dz \approx p(x) \cdot \int_{B(x, r)} \, dz
$$
Example: k-NN density estimator

$$
\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}
$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.

Main idea:
If probability density p of X is “smooth”, then probability mass of $B(x, r)$ (i.e., ball of radius r around x) is

$$
\int_{B(x, r)} p(z) \, dz \approx p(x) \cdot \int_{B(x, r)} \, dz = p(x) \cdot \text{vol}(B(x, r))
$$
Example: k-NN density estimator

$$
\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}
$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.

Main idea:
If probability density p of X is “smooth”, then probability mass of $B(x, r)$ (i.e., ball of radius r around x) is

$$
\int_{B(x, r)} p(z) \, dz \approx p(x) \cdot \int_{B(x, r)} 1 \, dz
= p(x) \cdot \text{vol}(B(x, r))
= p(x) \cdot v_d \cdot r^d.
$$
Beyond Gaussians: non-parametric methods (continued)

Example: k-NN density estimator

$$
\hat{p}(x) = \frac{k/n}{v_d \cdot r_k(x)^d}
$$

where

- $r_k(x)$ is distance from x to k-th nearest neighbor among X_1, \ldots, X_n;
- v_d is the volume of the unit ball in \mathbb{R}^d.

Main idea:
If probability density p of X is “smooth”, then probability mass of $B(x, r)$ (i.e., ball of radius r around x) is

$$
\int_{B(x, r)} p(z) \, dz \approx p(x) \cdot \int_{B(x, r)} \, dz
$$

$$
= p(x) \cdot \text{vol}(B(x, r))
$$

$$
= p(x) \cdot v_d \cdot r^d.
$$

For $r \approx r_k(x)$, LHS is about k/n, so

$$
\frac{k}{n} \approx p(x) \cdot v_d \cdot r_k(x)^d.
$$
Example: k-NN density estimates in generative models

Estimation of class priors and class conditional distributions:

- Distribution of Y: estimate using MLE
 \[
 \hat{\pi}_0 = \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i),
 \hat{\pi}_1 = \frac{1}{n} \sum_{i=1}^{n} Y_i
 \]
 (for $K = 2$ classes, $Y = \{0, 1\}$).

- Conditional distribution of X given $Y = y$: estimate using k-NN density estimator
 \[
 \hat{p}_y(x) = \frac{k}{|S_y|} \cdot r_{k,y}(x)
 \]
 where $|S_y|$ are the $X_i's$ with label $Y_i = y$, and $r_{k,y}(x)$ is distance to k-th nearest neighbor among S_y.

Plug-in classifier:
\[
\hat{f}(x) := \arg \max_{y \in Y} \hat{\pi}_y \cdot \hat{p}_y(x).
\]
Example: k-NN density estimates in generative models

Estimation of class priors and class conditional distributions:

- Distribution of Y: estimate using MLE

\[
\hat{\pi}_0 := \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i), \quad \hat{\pi}_1 := \frac{1}{n} \sum_{i=1}^{n} Y_i
\]

(for $K = 2$ classes, $\mathcal{Y} = \{0, 1\}$).
Example: k-NN density estimates in generative models

Estimation of class priors and class conditional distributions:

- **Distribution of Y:** estimate using MLE

 $$\hat{\pi}_0 := \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i), \quad \hat{\pi}_1 := \frac{1}{n} \sum_{i=1}^{n} Y_i$$

 (for $K = 2$ classes, $\mathcal{Y} = \{0, 1\}$).

- **Conditional distribution of X given $Y = y$:** estimate using k-NN density estimator

 $$\hat{p}_y(x) = \frac{k/|S_y|}{v_d \cdot r_{k,y}(x)^d}$$

 where $|S_y|$ are the X_i's with label $Y_i = y$, and $r_{k,y}(x)$ is distance to k-th nearest neighbor among S_y.
Example: k-NN density estimates in generative models

Estimation of class priors and class conditional distributions:

- Distribution of Y: estimate using MLE

\[
\hat{\pi}_0 := \frac{1}{n} \sum_{i=1}^{n} (1 - Y_i), \quad \hat{\pi}_1 := \frac{1}{n} \sum_{i=1}^{n} Y_i
\]

(for $K = 2$ classes, $\mathcal{Y} = \{0, 1\}$).

- Conditional distribution of X given $Y = y$: estimate using k-NN density estimator

\[
\hat{p}_y(x) = \frac{k / |S_y|}{v_d \cdot r_{k,y}(x)^d}
\]

where $|S_y|$ are the X_i's with label $Y_i = y$, and $r_{k,y}(x)$ is distance to k-th nearest neighbor among S_y.

Plug-in classifier:

\[
\hat{f}(x) := \arg \max_{y \in \mathcal{Y}} \hat{\pi}_y \cdot \hat{p}_y(x).
\]
Final remarks

Some redeeming qualities of classifiers based on generative models:

- Simple recipe, many variations.
Some redeeming qualities of classifiers based on generative models:

- Simple recipe, many variations.
- Can also get predictions of conditional probabilities:

\[
\hat{P}(Y = y \mid X = x) = \frac{\hat{P}(Y = y) \cdot \hat{P}(X = x \mid Y = y)}{\sum_{y' \in Y} \hat{P}(Y = y') \cdot \hat{P}(X = x \mid Y = y')},
\]

which is a special kind of real-valued prediction.

(Important: denominator does matter for this!)
Final remarks

Some redeeming qualities of classifiers based on generative models:

▶ Simple recipe, many variations.

▶ Can also get predictions of conditional probabilities:

\[
\hat{P}(Y = y \mid X = x) = \frac{\hat{P}(Y = y) \cdot \hat{P}(X = x \mid Y = y)}{\sum_{y' \in Y} \hat{P}(Y = y') \cdot \hat{P}(X = x \mid Y = y')},
\]

which is a special kind of real-valued prediction.

(Important: denominator does matter for this!)

▶ Multi-class is easy to handle (see above).
Key takeaways

1. Generative structure of Bayes classifier.
2. Basic properties of multivariate Gaussians.
3. Basic recipe for learning a classifier based on a generative model.