Clustering

COMS 4771
1. Clustering
Unsupervised classification / clustering

Unsupervised classification

- **Input**: $x_1, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: function $f : \mathbb{R}^d \rightarrow \{1, \ldots, k\} =: [k]$.
- **Typical semantics**: hidden subpopulation structure.

Clustering

- **Input**: $x_1, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: partitioning of x_1, \ldots, x_n into k groups.

- Often done via unsupervised classification; ⇒ "clustering" often synonymous with "unsupervised classification".
- Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) → quantization.
Unsupervised classification / clustering

Unsupervised classification

- **Input**: $x_1, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: function $f : \mathbb{R}^d \to \{1, \ldots, k\} =: [k]$.
- **Typical semantics**: hidden subpopulation structure.

Clustering

- **Input**: $x_1, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output**: partitioning of x_1, \ldots, x_n into k groups.
- Often done via unsupervised classification;
 \[\Rightarrow \text{“clustering” often synonymous with “unsupervised classification”}. \]
- Sometimes also have a “representative” $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) \[\rightarrow\text{quantization}.\]
Unsupervised classification / clustering

Input: \(x_1, \ldots, x_n \in \mathbb{R}^d \), target cardinality \(k \in \mathbb{N} \).

Output: partitioning of \(x_1, \ldots, x_n \) into \(k \) groups.

Often done via unsupervised classification; \(\Rightarrow \) “clustering” often synonymous with “unsupervised classification”.

Sometimes also have a “representative” \(c_j \in \mathbb{R}^d \) for each \(j \in [k] \) (e.g., average of the \(x_i \) in \(j \)th group) \(\rightarrow \) quantization.
“One-hot” / “dummy variable” encoding of \(f(x) \)

\[
\phi(x) = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}
\]

(Often used together with other features.)
Uses of clustering: feature representations

Histogram representation

- Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_{i,1}, \ldots, x_{i,m} \in \mathbb{R}^p$ (e.g., small patches of an image).

- Cluster all the parts $x_{i,j}$: get k representatives $c_1, \ldots, c_k \in \mathbb{R}^p$.

- Represent x_i by a histogram over $\{1, \ldots, k\}$ based on assignments of x_i’s parts to representatives.
Uses of clustering: compression

Quantization Replace each x_i with its representative

$$x_i \mapsto c_f(x_i).$$

Example: quantization at image patch level.
2. k-means
\(k\)-means optimization problem

- **Input**: \(x_1, \ldots, x_n \in \mathbb{R}^d\), target cardinality \(k \in \mathbb{N}\).
- **Output**: \(k\) “means” \(c_1, \ldots, c_k \in \mathbb{R}^d\).
- **Objective**: choose \(c_1, \ldots, c_k \in \mathbb{R}^d\) to minimize

\[
\sum_{i=1}^{n} \min_{j \in [k]} \|x_i - c_j\|_2^2.
\]
k-means optimization problem

- **Input:** $x_1, \ldots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- **Output:** k “means” $c_1, \ldots, c_k \in \mathbb{R}^d$.
- **Objective:** choose $c_1, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \min_{j \in [k]} \|x_i - c_j\|_2^2.$$

Natural assignment function

$$f(x) := \arg \min_{j \in [k]} \|x - c_j\|_2^2.$$
k-means optimization problem

- **Input:** \(x_1, \ldots, x_n \in \mathbb{R}^d \), target cardinality \(k \in \mathbb{N} \).
- **Output:** \(k \) “means” \(c_1, \ldots, c_k \in \mathbb{R}^d \).
- **Objective:** choose \(c_1, \ldots, c_k \in \mathbb{R}^d \) to minimize

\[
\sum_{i=1}^{n} \min_{j \in [k]} \| x_i - c_j \|_2^2.
\]

Natural assignment function

\[
f(x) := \arg \min_{j \in [k]} \| x - c_j \|_2^2.
\]

NP-hard, even if \(k = 2 \) or \(d = 2 \).
k-means clustering for $k = 1$

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \|x_i - c\|_2^2.$$
The easy cases

> **k-means clustering for** $k = 1$

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \|x_i - c\|_2^2.$$

Solution: Using “bias/variance decomposition”, best choice is $c = \frac{1}{n} \sum_{i=1}^{n} x_i$.
The easy cases

- **k-means clustering for** $k = 1$

 Problem: Pick $c \in \mathbb{R}^d$ to minimize
 \[
 \sum_{i=1}^{n} \|x_i - c\|_2^2.
 \]

 Solution: Using “bias/variance decomposition”, best choice is
 \[
 c = \frac{1}{n} \sum_{i=1}^{n} x_i.
 \]

- **k-means clustering for** $d = 1$

 Dynamic programming in time $O(n^2k)$.

Lloyd's algorithm is a popular heuristic for general k and d.
(There are many other algorithms for k-means clustering.)
The easy cases

- **k-means clustering for $k = 1$**

 Problem: Pick $c \in \mathbb{R}^d$ to minimize

 \[
 \sum_{i=1}^{n} \| x_i - c \|_2^2.
 \]

 Solution: Using “bias/variance decomposition”, best choice is $c = \frac{1}{n} \sum_{i=1}^{n} x_i$.

- **k-means clustering for $d = 1$**

 Dynamic programming in time $O(n^2k)$.

 Lloyd’s algorithm is a popular heuristic for general k and d.

 (There are many other algorithms for k-means clustering.)
Lloyd’s algorithm

- Start with some initial “means” \(c_1, \ldots, c_k \).

- Repeat:
 - Partition \(x_1, \ldots, x_n \) into \(k \) clusters \(C_1, \ldots, C_k \), based on distance to current “means”:
 \[
 x_i \mapsto \arg \min_{j \in [k]} \| x_i - c_j \|_2^2, \quad i \in [n],
 \]
 breaking ties according to any fixed rule.

- Update “means”:
 \[
 c_j := \text{mean}(C_j), \quad j \in [k].
 \]
Sample run of Lloyd’s algorithm

Arbitrary initialization of c_1 and c_2.
Sample run of Lloyd’s algorithm

Iteration 1
Optimize “assignments”.
Sample run of Lloyd’s algorithm

Iteration 1
Optimize “means” \(c_j \).
Sample run of Lloyd’s algorithm

Iteration 2
Optimize “assignments”.
Sample run of Lloyd’s algorithm

Iteration 2
Optimize “means” c_j.
Sample run of Lloyd’s algorithm

Iteration 3
Optimize “assignments”.

-2 0 2
-2
0
2
Sample run of Lloyd’s algorithm

Iteration 3
Optimize “means” c_j.
Sample run of Lloyd’s algorithm

Iteration 4
Optimize “assignments”.

h

−2 0 2
−2
0
2

(h)
Sample run of Lloyd’s algorithm

Iteration 4
Optimize “means” c_j.
Basic idea: Choose initial centers to have good coverage of the data points.
Initializing Lloyd’s algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal
For $j = 1, \ldots, k$:

- Pick $c_j \in \mathbb{R}^d$ from among x_1, \ldots, x_n farthest from previously chosen c_1, \ldots, c_{j-1}.

 (c_1 chosen arbitrarily.)
Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal
For \(j = 1, \ldots, k \):

- Pick \(c_j \in \mathbb{R}^d \) from among \(x_1, \ldots, x_n \) farthest from previously chosen \(c_1, \ldots, c_{j-1} \).

(\(c_1 \) chosen arbitrarily.)

But this can be thrown off by outliers...
Initializing Lloyd’s algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal
For $j = 1, \ldots, k$:

- Pick $c_j \in \mathbb{R}^d$ from among x_1, \ldots, x_n farthest from previously chosen c_1, \ldots, c_{j-1}.

 (c_1 chosen arbitrarily.)

But this can be thrown off by outliers...

D^2 sampling (a.k.a. “k-means++”)
For $j = 1, \ldots, k$:

- Randomly pick $c_j \in \mathbb{R}^d$ from among x_1, \ldots, x_n according to distribution

 $$P(x_i) \propto \min_{\ell=1,\ldots,j-1} \|x_i - c_\ell\|_2^2.$$

 (Uniform distribution when $j = 1$.)
Choosing k

- Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).
Choosing k

- Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).

- Heuristic: Find large gap between $(k - 1)$-means cost and k-means cost.
3. Hierarchical clustering
Clustering at multiple scales

$k = 2$ or $k = 3$?

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.
Clustering at multiple scales

$k = 2$ or $k = 3$?

Hierarchical clustering: encode clusterings for all values of k in a tree.
Clustering at multiple scales

$k = 2$ or $k = 3$?

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.
Clustering at multiple scales

$k = 2$ or $k = 3$?

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.
Clustering at multiple scales

$k = 2$ or $k = 3$?

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.
Example: phylogenetic tree
Agglomerative clustering

- Start with every point x_i in its own cluster.
- Repeatedly merge “closest” pair of clusters, until only one cluster remains.
Agglomerative clustering

- Start with every point \(x_i \) in its own cluster.
- Repeatedly merge “closest” pair of clusters, until only one cluster remains.

Single-linkage

\[
\text{dist}(C, C') := \min_{x \in C, x' \in C'} \| x - x' \|_2.
\]

Complete-linkage

\[
\text{dist}(C, C') := \max_{x \in C, x' \in C'} \| x - x' \|_2.
\]
Agglomerative clustering

- Start with every point x_i in its own cluster.
- Repeatedly merge “closest” pair of clusters, until only one cluster remains.

Single-linkage

$$\text{dist}(C, C') := \min_{x \in C, x' \in C'} \|x - x'\|_2.$$

Complete-linkage

$$\text{dist}(C, C') := \max_{x \in C, x' \in C'} \|x - x'\|_2.$$

Average-linkage

Many variants. E.g., *Ward’s average linkage*

$$\text{dist}(C, C') := \frac{|C| \cdot |C'|}{|C| + |C'|} \|\text{mean}(C) - \text{mean}(C')\|_2^2.$$
Key takeaways

- **Uses of clustering:**
 - Unsupervised classification ("hidden subpopulations").
 - Quantization
 - ...
 - k-means clustering: popular objective for clustering and quantization.
 - Lloyd’s algorithm: alternating optimization, needs good initialization.
 - Hierarchical clustering: clustering at multiple levels of granularity.