Objectives

Prediction error / zero-one loss

\[P \text{ is a distribution over } \mathcal{X} \times \{-1, +1\}, \text{ and } (X, Y) \sim P. \]

For any classifier \(f: \mathcal{X} \to \{-1, +1\}, \)

\[\text{err}(f) = P\left(f(X) \neq Y \right) = \mathbb{E}\left[\ell_{0/1}(Yf(X)) \right]. \]

Also works with real-valued predictors \(f: \mathcal{X} \to \mathbb{R}; \) for example:

- \(k \)-NN: average of \(y \)-values of \(k \) nearest neighbors.
- \(\text{Trees} \): leaf nodes with a real-valued output (e.g., average of \(y \)-values of training examples that reach a leaf). “Regression trees”
- \(\text{Linear classifiers} \): \(x \mapsto \langle w, x \rangle - t. \)
- \(\text{Classifiers from generative models} \): \(x \mapsto P_\theta(Y = +1 | X = x) - 1/2. \)

Often useful to adjust threshold (e.g., \(t \) and \(1/2 \) above).

Thresholds

Uses for adjusting threshold \(t \)

Often have different costs for different kinds of mistakes:

<table>
<thead>
<tr>
<th>(Y)</th>
<th>(f(X) \leq t)</th>
<th>(f(X) > t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-1)</td>
<td>(0)</td>
<td>(c)</td>
</tr>
<tr>
<td>(+1)</td>
<td>(1 - c)</td>
<td>(0)</td>
</tr>
</tbody>
</table>

Also, often interested in different performance criteria.

- \(\text{Precision}: \)
 \[P(Y = +1 | f(X) > t) \]
- \(\text{Recall} \) (a.k.a. Sensitivity, True Positive Rate):
 \[P(f(X) > t | Y = +1) \]
- \(\text{Specificity}: \)
 \[P(f(X) \leq t | Y = -1) \]
- \(\text{False Positive Rate}: \)
 \[P(f(X) > t | Y = -1) \]

Conditional probability estimation

Sometimes would like real-valued predictor \(f \) to be related to the conditional probability function \(\eta \)

\[\eta(x) = P(Y = +1 | X = x). \]

- Straightforward when using generative models.
- Can use a loss function that is minimized by \(\eta \) (or some invertible transformation thereof).
Eliciting conditional probabilities

Goal: loss function that is minimized by (some invertible transformation of) the conditional probability function

\[\eta(x) = P(Y = +1 \mid X = x). \]

Using loss functions: easy with linear/affine functions whenever the loss function \(\ell \) is a convex function:

\[
\min_{w \in \mathbb{R}^d} R(w) + \frac{1}{n} \sum_{i=1}^{n} \ell(y_i \langle w, x_i \rangle).
\]

(Here, the regularization function \(R \) is also assumed to be convex.)

Caveat: Might not be possible to represent

\[x \mapsto 2\eta(x) - 1 \quad \text{or} \quad x \mapsto \ln\left(\frac{\eta(x)}{1 - \eta(x)}\right) \]

as (say) a linear function \(x \mapsto \langle w, x \rangle \).

Common remedies: enhance the feature space via feature expansion or kernels, or use more flexible models (e.g., tree models).

Structured output spaces

Sometimes \(\mathcal{Y} \) is not just \(\{0, 1\} \) or \(\{1, 2, \ldots, K\} \), but rather a collection of structured objects.

Example: sequence tagging

\[
\mathcal{X}: \text{sequences of English words} \quad \mathcal{Y}: \text{sequences of parts-of-speech}
\]

\[
\text{the/D man/N saw/V the/D dog/N}
\]

(Verbs tend to follow Nouns.)

Many other examples:

- sentence parse trees
- web search result ranking
- visual scene labeling
- ...
Structured output prediction

Featurization
Create several input-output feature maps $\phi_1, \phi_2, \ldots, \phi_d : X \times Y \rightarrow \mathbb{R}$.

- e.g., $\phi_{1000}(x, y) = 1$ if i-th word in x is “the”, and i-th POS in y is “D”

For each possible $y \in Y$, consider an input-output feature vector:

$$\Phi(x, y) := (\phi_1(x, y), \phi_2(x, y), \ldots, \phi_d(x, y)) \in \mathbb{R}^d.$$

Note: often d is enormous, but $\phi_i(x, y) = 0$ for most i.

Model
Prediction model is based on linear functions of input-output feature vectors:

$$x \mapsto \arg \max_{y \in Y} \langle w, \Phi(x, y) \rangle$$

for weight vector $w \in \mathbb{R}^d$.

Note: the arg max can often be computed efficiently (e.g., via dynamic programming), even when Y is enormous.

Structured Perceptron training (Collins, 2002)

Online Structured Perceptron

input Labeled examples $\{(x_i, y_i)\}_{i=1}^n$ from $X \times Y$.

1. initialize $\hat{w}_1 := 0$.
2. for $t = 1, 2, \ldots, \text{do}$
3. Predict: $\hat{y}_t := \arg \max_{y \in Y} \langle \hat{w}_{t-1}, \Phi(x_t, y) \rangle$
4. if $\hat{y}_t \neq y_t$ then
5. Update: $\hat{w}_t := \hat{w}_{t-1} + \Phi(x_t, y_t) - \Phi(x_t, \hat{y}_t)$.
6. else
7. No update: $\hat{w}_t := \hat{w}_{t-1}$
8. end if
9. end for

Can also help to make multiple passes through data, and also to employ averaging (as in Averaged Perceptron).

Key takeaways

1. Concept of real-valued predictors and thresholds; alternative performance criteria.
2. Eliciting conditional probabilities with loss functions.
3. High-level idea of structured output prediction.