Nearest neighbor search

▶ Naive implementation of NN classifiers based on n labeled examples requires n distance computations to compute the prediction on any test point $x \in \mathcal{X}$.

▶ If using Euclidean distance in \mathbb{R}^d, then each distance computation is $O(d)$ operations.

$\implies O(dn)$ operations per test point.

▶ Solution: store the labeled examples in a special data structure that permits fast NN queries.

Tree structures for one-dimensional data

A data structure for fast NN search in \mathbb{R}^1
Sort training data so that $x_1 \leq x_2 \leq \cdots \leq x_n$, then construct binary tree:

With each tree node, remember midpoint between rightmost point in left child, and leftmost point in right child. This permits very efficient NN search.

If tree is (approximately) balanced, then $O(\log(n))$ time to find NN!

Tree structures for multi-dimensional data

A data structure for fast NN search in \mathbb{R}^d, $d > 1$
Many options, but a popular one is the K-D tree.

Construction procedure
Given points $S \subset \mathbb{R}^d$:

1. Pick a coordinate $j \in \{1, 2, \ldots, d\}$.
2. Let m be the median of $\{x_j : x \in S\}$.
3. Split points into halves:

 $$L := \{x \in S : x_j < m\},$$

 $$R := \{x \in S : x_j \geq m\}.$$

4. Recurse on L and R.

Easy to lookup points in S (in $O(\log(n))$ time).

What about new points (not in S)?

Same $O(\log(n))$-time routing of a test point $x \in \mathbb{R}^d$ (called defeatest search) is overly optimistic: might not yield the NN!
Searching general tree structures

Generic NN search procedure for binary space partition trees
Given a test point \(x \) and a tree node \(v \) (initially \(v = \text{root} \)):

1. Pick one child \(L \), recursively find NN of \(x \) in \(L \) (call it \(x_L \)).
2. Let \(R \) be the other child. If
 \[\| x - x_L \|_2 < \min_{x' \in R} \| x - x' \|_2 \]
 (⋆)
 then return \(x_L \).
3. Otherwise recursively find NN of \(x \) in \(R \) (call it \(x_R \)); return the closer of \(x_L \) and \(x_R \).

Note: can't always guarantee \(O(\log(n)) \) search time due to Step 3.

Question: How do you check if (⋆) is true?
▶ Note: it is okay (though wasteful) to declare “false” in Step 2 even if (⋆) turns out to be true.

Using geometric properties

For K-D trees:
\(L \) and \(R \) are separated by a hyperplane \(H = \{ z \in \mathbb{R}^d : z_j = m \} \).

Suppose test point \(x \) is in \(L \), and the NN of \(x \) in \(L \) is \(x_L \).

By geometry,
\[\min_{x' \in R} \| x - x' \|_2 \geq \text{distance from } x \text{ to } H \]
\[= |x_j - m| . \]

A valid check: if \(\| x - x_L \|_2 < |x_j - m| \), then
\[\| x - x_L \|_2 < \min_{x' \in R} \| x - x' \|_2 . \]
In this case, we can skip searching \(R \) and immediately return \(x_L \).

Efficient NN search?

For certain kinds of binary space partition trees (similar to K-D trees), enough pruning will happen so NN search typically completes in \(O(2^d \log(n)) \) time.

▶ Very fast in low dimensions.
▶ But can be slow in high dimensions.

But NN search is only means to an end—ultimate goal is good classification. K-D tree construction doesn’t even look at the labels!

Question: Can we use trees to directly build good classifiers?

Key takeaways

1. Efficient data structure for NN search in \(\mathbb{R}^1 \).
2. Construction of K-D trees in \(\mathbb{R}^d \), \(d > 1 \).
3. NN search in K-D trees.