Notes on AdaBoost

The algorithm

The input training data is \{ (x_i, y_i) \}_{i=1}^n \text{ from } \mathcal{X} \times \{-1, +1\}.

- Initialize \(D_1(i) := 1/n \) for each \(i = 1, 2, \ldots, n \).
- For \(t = 1, 2, \ldots, T \), do:
 - Give \(D_t \)-weighted examples to Weak Learner; get back \(f_t : \mathcal{X} \to \{-1, +1\} \).
 - Compute weight on \(f_t \) and update weights on examples:
 \[
 z_t := \sum_{i=1}^{n} D_t(i) \cdot y_i f_t(x_i)
 \]
 \[
 \alpha_t := \frac{1}{2} \ln \frac{1 + z_t}{1 - z_t}
 \]
 \[
 D_{t+1}(i) := \frac{D_t(i) \cdot \exp(-\alpha_t \cdot y_i f_t(x_i))}{Z_t}
 \]
 for each \(i = 1, 2, \ldots, n \)
 where
 \[
 Z_t := \sum_{i=1}^{n} D_t(i) \cdot \exp(-\alpha_t \cdot y_i f_t(x_i))
 \]
 is the normalizer that makes \(D_{t+1} \) a probability distribution.
- Final classifier is \(\hat{f} \) defined by
 \[
 \hat{f}(x) := \text{sign} \left(\sum_{t=1}^{T} \alpha_t \cdot f_t(x) \right)
 \]
 for \(x \in \mathcal{X} \).

Training error rate bound

Let \(\hat{h} \) be the function defined by

\[
\hat{h}(x) := \sum_{t=1}^{T} \alpha_t \cdot f_t(x) \quad \text{for } x \in \mathcal{X}
\]

so \(\hat{f}(x) = \text{sign}(\hat{h}(x)) \). The training error rate of \(\hat{f} \) can be bounded above by the average exponential loss of \(\hat{h} \):

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}\{\hat{f}(x_i) \neq y_i\} \leq \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{h}(x_i))
\]

This holds because

\[
\hat{f}(x_i) \neq y_i \iff -y_i \hat{h}(x_i) \geq 0 \iff \exp(-y_i \hat{h}(x_i)) \geq 1.
\]
Furthermore, the average exponential loss of \hat{h} equals the product of the normalizers from all rounds:

$$\frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{h}(x_i)) = \sum_{i=1}^{n} D_1(i) \cdot \exp \left(- \sum_{t=1}^{T} \alpha_t \cdot y_i f_t(x_i) \right)$$

$$= Z_1 \sum_{i=1}^{n} \frac{D_1(i) \cdot \exp(-\alpha_1 \cdot y_i f_1(x_i))}{Z_1} \cdot \exp \left(- \sum_{t=2}^{T} \alpha_t \cdot y_i f_t(x_i) \right)$$

$$= Z_1 \sum_{i=1}^{n} D_2(i) \cdot \exp \left(- \sum_{t=2}^{T} \alpha_t \cdot y_i f_t(x_i) \right)$$

$$= Z_1 Z_2 \sum_{i=1}^{n} \frac{D_2(i) \cdot \exp(-\alpha_2 \cdot y_i f_2(x_i))}{Z_2} \cdot \exp \left(- \sum_{t=3}^{T} \alpha_t \cdot y_i f_t(x_i) \right)$$

$$= Z_1 Z_2 Z_3 \sum_{i=1}^{n} D_3(i) \cdot \exp \left(- \sum_{t=3}^{T} \alpha_t \cdot y_i f_t(x_i) \right)$$

$$= \ldots$$

$$= \prod_{t=1}^{T} Z_t.$$

Since each $y_i f_t(x_i) \in \{-1,+1\}$, the normalizer Z_t can be written as

$$Z_t = \sum_{i=1}^{n} D_t(i) \cdot \exp(-\alpha_t \cdot y_i f_t(x_i))$$

$$= \sum_{i=1}^{n} D_t(i) \cdot \left(\frac{1 + y_i f_t(x_i)}{2} \exp(-\alpha_t) + \frac{1 - y_i f_t(x_i)}{2} \exp(\alpha_t) \right)$$

$$= \sum_{i=1}^{n} D_t(i) \cdot \left(\frac{1 + y_i f_t(x_i)}{2} \sqrt{\frac{1 - z_t}{1 + z_t}} + \frac{1 - y_i f_t(x_i)}{2} \sqrt{\frac{1 + z_t}{1 - z_t}} \right)$$

$$= \sqrt{(1 + z_t)(1 - z_t)}$$

$$= \sqrt{1 - z_t^2}.$$

So, we conclude the following bound on the training error rate of \hat{f}:

$$\frac{1}{n} \sum_{i=1}^{n} 1\{ \hat{f}(x_i) \neq y_i \} \leq \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i \hat{h}(x_i)) = \prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} \sqrt{1 - z_t^2} \leq \exp \left(-\frac{1}{2} \sum_{t=1}^{T} z_t^2 \right)$$

where the last step uses the fact that $1 + x \leq e^x$ for any real number x.

(The bound is usually written in terms of $\gamma_t := z_t/2$, i.e., as $\exp(-2\sum_{t=1}^{T} \gamma_t^2).$)

Margins on training examples

Let \hat{g} be the function defined by

$$\hat{g}(x) := \frac{\sum_{t=1}^{T} \alpha_t \cdot f_t(x)}{\sum_{t=1}^{T} |\alpha_t|} \quad \text{for } x \in X$$

so $y_i \hat{g}(x_i)$ is the margin achieved on example (x_i, y_i). We may assume without loss of generality that $\alpha_t \geq 0$ for each $t = 1, 2, \ldots, T$ (by replacing f_t with $-f_t$ as needed.) Fix a value $\theta \in (0, 1)$, and consider the fraction
of training examples on which \hat{g} achieves a margin at most θ:

$$\frac{1}{n} \sum_{i=1}^{n} 1\{y_i\hat{g}(x_i) \leq \theta\}.$$

This quantity can be bounded above using the arguments from before:

$$\frac{1}{n} \sum_{i=1}^{n} 1\{y_i\hat{g}(x_i) \leq \theta\} = \frac{1}{n} \sum_{i=1}^{n} 1\{y_i\hat{h}(x_i) \leq \theta \sum_{t=1}^{T} \alpha_t\}$$

$$\leq \exp\left(\theta \sum_{t=1}^{T} \alpha_t\right) \cdot \frac{1}{n} \sum_{i=1}^{n} \exp(-y_i\hat{h}(x_i))$$

$$= \exp\left(\theta \sum_{t=1}^{T} \alpha_t\right) \cdot \prod_{t=1}^{T} \sqrt{1-z_t^2}$$

$$= \prod_{t=1}^{T} \sqrt{(1+z_t)^{1+\theta}(1-z_t)^{1-\theta}}.$$

Suppose that for some $\gamma > 0$, $z_t \geq 2\gamma$ for all $t = 1, 2, \ldots, T$. If $\theta < \gamma$, then using calculus, it can be shown that each term in the product is less than 1:

$$\sqrt{(1+z_t)^{1+\theta}(1-z_t)^{1-\theta}} < 1.$$

Hence, the bound decreases to zero exponentially fast with T.

3