Inductive bias and regularization
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Minimum norm solutions



Normal equations (A" A)w = A"b can have infinitely-many solutions
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Norm of w is a measure of “steepness”

[wo(@) — wTp(a)] < [lwll x o(z) — o)
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(Cauchy-Schwarz inequality)

» Note: Data does not provide a reason to prefer short w over long w

» Preference for short w is example of inductive bias (tie-breaking rule)
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Ridge regression

Ridge regression: “balance” two concerns by minimizing

[ Aw = b]I* + Aljw]®

where A > 0 is hyperparameter

» Concern 1: “data fitting term” ||Aw — b]|? (involves training data)
» Concern 2: regularizer \||w||* (doesn’t involve training data)

» )\ = 0 corresponds to objective in OLS

» )\ — 0" gives minimum norm solution
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3{ data
—— minimum norm solution
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Example: n = d = 100, (X®, Y@ "< (XY), where X ~ N(0,I), and
conditional distribution of Y given X =z is N(Z;gl zj,1)
» Normal equations have unique solution, but OLS performs poorly
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Different interpretation of ridge regression objective

lAw = b* + Afjw]]®
= || Aw = b|* + || (VAD)w — 0|

» Second term is MSE on d additional “fake examples”

(2D, ylm)) =

(aﬂn+2),y(n+2))

CARNTRE
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“Augmented’ dataset in matrix notation:

e (@) 5 ()7
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SO

| Aw = b]]* + Allwl* = || Aw - b]

What are “normal equations” for ridge regression objective (in terms of A, B)?
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Other forms of regularization

Regularization using domain-specific data augmentation

Create “fake examples” from existing data by applying transformations that do
not change appropriateness of corresponding label, e.g.,

» Image data: rotations, rescaling
» Audio data: change playback rate
» Text data: replace words with synonyms
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Functional penalties (e.g., norm on w)
» Ridge: (squared) ¢? norm
lwi?

» Lasso: /! norm
d

lwlly = lw]

J=1

» Sparse regularization: £° “norm” (not really a norm)

|wl||o = # coefficients in w that are non-zero
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Example: n =d = 100, (X®, YO\, " (X,Y), where X ~ N(0, ), and
conditional distribution of Y given X =z is N(3_'2 #;, 1)

» Minimize ||Aw — b||* + M||w]||; (Lasso)

—*— training MSE
101 true MSE
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Weighted (squared) % norm:
d
>
i=1

for some “costs” c¢1,...,cq >0
» Motivation: make it more “costly” (in regularizer) to use certain features

» Where do costs come from?
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Example:
o(x) = (1, cos(x), sin(x), cos(2z), sin(2z), . . ., cos(32x), sin(32z))

with regularizer on w = (Wo, Weos 1, Wsin 1y - - - » Weos 32, Wsin 32)

d
2 -2 2 2
wO + ZQ X (wcos,j + wsin,j)
Jj=1

(More expensive to use “high frequency” features)
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Question: Can effect of costs be achieved using (original) ridge regularization by
changing ¢?
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Margins and support vector machines



Many linear classifiers with same training error rate
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“margin”, i.e., most “wiggle room

Possible inductive bias: largest
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For notational convenience, use ) = {—1,1} instead of ) = {0, 1}
> fup(x) = sign(w'z + b)
» fuu(z) =y can be written as

y(w'z +b) >0
» If it is possible to satisfy
y(w'z+b) >0 forall (z,y) €8,
then can rescale w and b so that
min y(w'z+b) =1

(z,y)€S
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Say linear classifier f,,;, achieves margin v on example (z,y) if:

> fw,b<x) =Y
» Distance from x to decision boundary of f,; is 7y

Say fu» achieves margin v on dataset & if it achieves margin at least  on every
example (x,y) € 8

» le., vis “worst” margin achieved on a training example
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How to find linear classifier f,,;, with largest margin on dataset §?
Let z € span{w} N Hy

For (z,y) € S satisfying y(w'x 4+ b) = 1, let T be
orthoprojection of x to span{w}, so

wr+b=w'T+b=uy

Therefore
[w' (T — 2)| =

So distance from x to H,; is
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How to find linear classifier f,,;, with largest margin on dataset §?

Solution: find (w,b) € R? x R that satisfy

min y(w'zx +b) =1
(x,y)€S

1
and that maximizes ——
[[wl|
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Support Vector Machine (SVM) optimization problem

1
min —
(w,b)ERIXR 2

st. y(w'z+b)>1 forall (z,y) €8

lwl?

(Recall, labels are from {—1,1} instead of {0, 1} here)

Examples (x,y) € 8 for which y(w'x + b) = 1 are called support vectors

Iris dataset, treating versicolor and virginica as a single class, using features

xr1 = sepal width, xr9 = petal width
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Soft-margin SVM: for datasets that are not linearly separable

1 2
. 1 o L ; ;
(w,br)rglglxﬂ% 2||wH T (Z):GS[ y(w T+ )]+
z,y

where [z], = max{0, z} (and C' > 0 is hyperparameter)

Term in summation corresponding to (z,y) € 8:
» Zero if y(w'z+b) > 1

» Otherwise, proportional to distance that  must be moved in order to satisfy
y(w'z +b) =1
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Synthetic example with normal feature vectors

» Two classes; class 0: N((0,0), 1), class 1: N((2,2),1)

» 200 training data from each class

» Solved soft-margin SVM problem with C' = 10 to obtain (w, b)
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