Cross validation

COMS 4721

The model selection problem

Objective

▶ Often necessary to consider many different models (e.g., types of classifiers) for a given problem.
▶ Sometimes “model” simply means particular setting of hyper-parameters (e.g., \(k\) in \(k\)-NN, number of nodes in decision tree).

Terminology

The problem of choosing a good model is called model selection.

Model selection by hold-out validation

(Henceforth, use \(h\) to denote particular setting of hyper-parameters / model choice.)

Hold-out validation

Model selection:

1. Randomly split data into three sets: training, validation, and test data.

2. Train classifier \(\hat{f}_h\) on training data for different values of \(h\).
3. Compute Validation (“hold-out”) error for each \(\hat{f}_h\): \(\text{err}(\hat{f}_h, \text{Validation})\).

4. Selection: \(\hat{h} = \text{value of } h \text{ with lowest Validation error.}\)
5. Train classifier \(\hat{f}\) using \(\hat{h}\) with training and validation data.

Model assessment:

6. Finally: estimate true error rate of \(\hat{f}\) using test data.

Main idea behind hold-out validation

Classifier \(\hat{f}_h\) trained on training data \(\longrightarrow\) \(\text{err}(\hat{f}_h, \text{Validation})\).

Classifier \(\hat{f}_h\) trained on training and validation data \(\longrightarrow\) \(\text{err}(\hat{f}_h, \text{Test})\).

The hope is that these quantities are similar!

(Making this rigorous is actually rather tricky.)
Beyond simple hold-out validation

Standard hold-out validation:

| Training | Validation | Test |

Classifier \(\hat{f}_h \) trained on Training data \(\rightarrow \) err(\(\hat{f}_h \), Validation).

Could also swap roles of Validation and Training:

- train \(\hat{f}_h \) using Validation data, and
- evaluate \(\hat{f}_h \) using Training data.

Classifier \(\hat{f}_h \) trained on Validation data \(\rightarrow \) err(\(\hat{f}_h \), Training).

Idea: Do both, and average results as overall validation error rate for \(h \).

Model selection by \(K \)-fold cross validation

Model selection:
1. Set aside some test data.
2. Of remaining data, split into \(K \) parts ("folds") \(S_1, S_2, \ldots, S_K \).
3. For each value of \(h \):
 - For each \(k \in \{1, 2, \ldots, K\} \):
 - Train classifier \(\hat{f}_{h,k} \) using all \(S_i \) except \(S_k \).
 - Evaluate classifier \(\hat{f}_{h,k} \) using \(S_k \): err(\(\hat{f}_{h,k} \), \(S_k \)).

 Example: \(K = 5 \) and \(k = 4 \)

 | Training | Training | Training | Validation | Training |

 - \(K \)-fold cross-validation error rate for \(h \): \(\frac{1}{K} \sum_{k=1}^{K} \text{err}(\hat{f}_{h,k}, S_k) \).

4. Set \(\hat{h} \) to the value \(h \) with lowest \(K \)-fold cross-validation error rate.

5. Train classifier \(\hat{f} \) using selected \(\hat{h} \) with all \(S_1, S_2, \ldots, S_K \).

Model assessment:
6. Finally: estimate true error rate of \(\hat{f} \) using test data.

How to choose \(K \)?

Argument for small \(K \)
Better simulates "variation" between different training samples drawn from underlying distribution.

| Training | Validation |

\(K = 2 \)

| Validation | Training |

\(K = 4 \)

Validation	Training	Training	Training
Training	Validation	Training	Training
Training	Training	Validation	Training
Training	Training	Training	Validation

Argument for large \(K \)
Some learning algorithms exhibit phase transition behavior (e.g., output is complete rubbish until sample size sufficiently large).

Using large \(K \) best simulates training on all data (except test, of course).

In practice: usually \(K = 5 \) or \(K = 10 \).

Recap

- **Model selection**: goal is to pick best model (e.g., hyper-parameter settings) to achieve low true error.

 - **Two common methods**: hold-out validation and \(K \)-fold cross validation (with \(K = 5 \) or \(K = 10 \)).

 - **Caution**: considering too many different models can lead to overfitting, even with hold-out / cross-validation.

 (Sometimes "averaging" the models in some way can help.)