Probability tails

COMS 4721
Binomial distribution

Number of heads when a coin with heads bias \(p \in [0, 1] \) is tossed \(n \) times:

binomial distribution

\[S \sim \text{Bin}(n, p) \]
Binomial distribution

Number of heads when a coin with heads bias $p \in [0, 1]$ is tossed n times:

binomial distribution

$$S \sim \text{Bin}(n, p)$$

Basic combinatorics: for any $k \in \{0, 1, 2, \ldots, n\}$,

$$P(S = k) = \binom{n}{k} p^k (1 - p)^{n-k}.$$
Special case: Bernoulli distribution

The outcome of a coin toss with heads bias $p \in [0, 1]$:

Bernoulli distribution

$$X \sim \text{Bern}(p) = \text{Bin}(1, p)$$

$$\mathbb{P}(X = 1) = p, \quad \mathbb{P}(X = 0) = 1 - p.$$
Special case: Bernoulli distribution

The outcome of a coin toss with heads bias $p \in [0, 1]$:

Bernoulli distribution

$$X \sim \text{Bern}(p) = \text{Bin}(1, p)$$

$$\mathbb{P}(X = 1) = p, \quad \mathbb{P}(X = 0) = 1 - p.$$

Mean:

$$\mathbb{E}(X) = \mathbb{P}(X = 0) \cdot 0 + \mathbb{P}(X = 1) \cdot 1 = p.$$
The outcome of a coin toss with heads bias $p \in [0, 1]$:

Bernoulli distribution

$$X \sim \text{Bern}(p) = \text{Bin}(1, p)$$

$$\mathbb{P}(X = 1) = p, \quad \mathbb{P}(X = 0) = 1 - p.$$

Mean:

$$\mathbb{E}(X) = \mathbb{P}(X = 0) \cdot 0 + \mathbb{P}(X = 1) \cdot 1 = p.$$

Variance:

$$\text{var}(X) = \mathbb{E}[(X - \mathbb{E}(X))^2] = p(1 - p).$$

(Standard deviation is $\sqrt{\text{var}(X)}$; more convenient to use than $\mathbb{E}[|X - \mathbb{E}(X)|]$.)
Let X_1, X_2, \ldots, X_n be iid Bern(p) random variables, and let $S \sim \text{Bin}(n, p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.
Binomial = sums of iid Bernoullis

Let X_1, X_2, \ldots, X_n be iid Bern(p) random variables, and let $S \sim \text{Bin}(n, p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.

Mean: By linearity of expectation,

$$
\mathbb{E}(S) = \mathbb{E} \left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \mathbb{E}(X_i) = np.
$$
Let X_1, X_2, \ldots, X_n be iid $\text{Bern}(p)$ random variables, and let $S \sim \text{Bin}(n, p)$. Then S has the same distribution as $X_1 + X_2 + \cdots + X_n$.

Mean: By linearity of expectation,

$$E(S) = E\left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} E(X_i) = np.$$

Variance: Since X_1, X_2, \ldots, X_n are independent,

$$\text{var}(S) = \text{var}\left(\sum_{i=1}^{n} X_i \right) = \sum_{i=1}^{n} \text{var}(X_i) = np(1 - p).$$
Question: What are the “typical” values (i.e., non-tail event) of $S \sim \text{Bin}(n, p)$?
Deviations from the mean

Question: What are the “typical” values (i.e., non-tail event) of $S \sim \text{Bin}(n, p)$?

How do we rigorously quantify the probability mass in the *tails*?
Let $S \sim \text{Bin}(n,p)$, and define

$$
\text{RE}(a\|b) := a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b} \geq 0 \quad (= 0 \text{ iff } a = b)
$$

(relative entropy between Bernoulli distributions with heads biases a and b).
Let $S \sim \text{Bin}(n, p)$, and define

$$
\text{RE}(a\|b) := a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b} \geq 0 \quad (= 0 \text{ iff } a = b)
$$

(relative entropy between Bernoulli distributions with heads biases a and b).

Upper tail bound: For any $u > p$,

$$
P(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p)) .\]

Lower tail bound: For any $\ell < p$,

$$
P(S \leq n \cdot \ell) \leq \exp(-n \cdot \text{RE}(\ell\|p)) .\]

Chernoff bound: Large deviations

Let $S \sim \text{Bin}(n, p)$, and define

$$RE(a\|b) := a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b} \geq 0 \quad (= 0 \text{ iff } a = b)$$

(*relative entropy* between Bernoulli distributions with heads biases a and b).

Upper tail bound: For any $u > p$,

$$\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot RE(u\|p)) .$$

Lower tail bound: For any $\ell < p$,

$$\mathbb{P}(S \leq n \cdot \ell) \leq \exp(-n \cdot RE(\ell\|p)) .$$

Both exponentially small in n.

Chernoff bound: large deviations

Let \(S \sim \text{Bin}(n, p) \), and define

\[
\text{RE}(a\|b) := a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b} \geq 0 \quad (= 0 \text{ iff } a = b)
\]

(\textit{relative entropy} between Bernoulli distributions with heads biases \(a \) and \(b \)).

Upper tail bound: For any \(u > p \),

\[
P(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p)).
\]

Lower tail bound: For any \(\ell < p \),

\[
P(S \leq n \cdot \ell) \leq \exp(-n \cdot \text{RE}(\ell\|p)).
\]

Both exponentially small in \(n \).

Large deviations from mean \(p \cdot n \) (e.g., \((u - p) \cdot n \)) are exponentially unlikely.
$p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 100$

$\exp(-\text{RE}(u\|p)) \approx 0.995$
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 200 \]

\[\exp(-\text{RE}(u\|p)) \approx 0.995 \]
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 300 \]

\[\exp(-\text{RE}(u\|p)) \approx 0.995 \]
Illustration of large deviations

\[p = 1/3, \quad u = 1/3 + 0.05, \quad n = 400 \]
\[\exp(-\text{RE}(u||p)) \approx 0.995 \]
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 500 \]
\[\exp(-\text{RE}(u \| p)) \approx 0.995 \]
Illustration of Large Deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 600 \]

\[\exp(-\text{RE}(u\|p)) \approx 0.995 \]
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 700 \]

\[\exp(-RE(u||p)) \approx 0.995 \]
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 800 \]

\[\exp(- \text{RE}(u\|p)) \approx 0.995 \]
$p = 1/3, \quad u = 1/3 + 0.05, \quad n = 900$

$\exp(-\text{RE}(u\|p)) \approx 0.995$
Illustration of large deviations

\[p = \frac{1}{3}, \quad u = \frac{1}{3} + 0.05, \quad n = 1000 \]
\[\exp(-\text{RE}(u \| p)) \approx 0.995 \]
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.
Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \parallel p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^{n} x_i \geq n \cdot u$.

Some shorthand notation:

$\text{▶ } p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p$.

$\text{▶ } u[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } u$.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$p[x] = p[k](1 - p)^{n-k}, \quad u[x] = u[k](1 - u)^{n-k} \leq (p u)^k (1 - p - u)^{n-k} \leq (p u)^n \cdot u (1 - p - u)^n \cdot (1 - u).$$

$$\mathbb{P}(S \geq n \cdot u) = \sum_{x \in \mathcal{E}} p[x] u[x] \leq \sum_{x \in \mathcal{E}} u[x] \leq \left(p u \right)^n \cdot u \cdot \left(1 - p - u \right)^n \cdot (1 - u) \leq \exp(-n \cdot \text{RE}(u \parallel p)).$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\Pr(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $p[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } p$.
- $u[x] := \text{probability mass of outcome } x \text{ when } X_i \text{ has heads bias } u$.

Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u||p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^{n} x_i \geq n \cdot u$.

Some shorthand notation:

- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^{n} x_i \geq n \cdot u$.

Some shorthand notation:

- $p[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias p.
- $u[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias u.

Core of the proof: Consider any outcome $\mathbf{x} \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$\frac{p[\mathbf{x}]}{u[\mathbf{x}]}$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:
- $p[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias p.
- $u[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias u.

Core of the proof: Consider any outcome $\mathbf{x} \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$
\frac{p[\mathbf{x}]}{u[\mathbf{x}]} = \frac{p^k (1 - p)^{n-k}}{u^k (1 - u)^{n-k}}
$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^{n} x_i \geq n \cdot u$.

Some shorthand notation:
- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$\frac{p[x]}{u[x]} = \frac{p^k (1 - p)^{n-k}}{u^k (1 - u)^{n-k}} = \left(\frac{p}{u} \right)^k \left(\frac{1 - p}{1 - u} \right)^{n-k}$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u||p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$\frac{p[x]}{u[x]} = \frac{p^k(1-p)^{n-k}}{u^k(1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:
- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

\[
\frac{p[x]}{u[x]} = \frac{p^k (1 - p)^{n-k}}{u^k (1 - u)^{n-k}} = \left(\frac{p}{u} \right)^k \left(\frac{1 - p}{1 - u} \right)^{n-k} \leq \left(\frac{p}{u} \right)^{n \cdot u} \left(\frac{1 - p}{1 - u} \right)^{n \cdot (1 - u)}.
\]

\[
\mathbb{P}(S \geq n \cdot u) = \sum_{x \in \mathcal{E}} p[x]
\]
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$\frac{p[x]}{u[x]} = \frac{p^k (1 - p)^{n-k}}{u^k (1 - u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1 - p}{1 - u}\right)^{n-k} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1 - p}{1 - u}\right)^{n \cdot (1-u)}.$$

$$\mathbb{P}(S \geq n \cdot u) = \sum_{x \in \mathcal{E}} p[x] \leq \sum_{x \in \mathcal{E}} u[x] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1 - p}{1 - u}\right)^{n \cdot (1-u)}.$$
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u \| p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $\mathbf{x} = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^n x_i \geq n \cdot u$.

Some shorthand notation:

- $p[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias p.
- $u[\mathbf{x}] :=$ probability mass of outcome \mathbf{x} when X_i has heads bias u.

Core of the proof: Consider any outcome $\mathbf{x} \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

\[
\frac{p[\mathbf{x}]}{u[\mathbf{x}]} = \frac{p^k(1-p)^{n-k}}{u^k(1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.
\]

\[
\mathbb{P}(S \geq n \cdot u) = \sum_{\mathbf{x} \in \mathcal{E}} p[\mathbf{x}] \leq \sum_{\mathbf{x} \in \mathcal{E}} u[\mathbf{x}] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.
\]
Proof of Chernoff bound (upper tail bound)

Theorem: For $S \sim \text{Bin}(n, p)$, $\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p))$ for $u > p$.

Consider n iid Bernoulli random variables: X_1, X_2, \ldots, X_n. Let $\mathcal{E} \subseteq \{0, 1\}^n$ be all outcomes $x = (x_1, x_2, \ldots, x_n)$ where $\sum_{i=1}^{n} x_i \geq n \cdot u$.

Some shorthand notation:

- $p[x] :=$ probability mass of outcome x when X_i has heads bias p.
- $u[x] :=$ probability mass of outcome x when X_i has heads bias u.

Core of the proof: Consider any outcome $x \in \mathcal{E}$ with, say, $k \geq n \cdot u$ heads:

$$\frac{p[x]}{u[x]} = \frac{p^k (1-p)^{n-k}}{u^k (1-u)^{n-k}} = \left(\frac{p}{u}\right)^k \left(\frac{1-p}{1-u}\right)^{n-k} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)}.$$

$$\mathbb{P}(S \geq n \cdot u) = \sum_{x \in \mathcal{E}} p[x] \leq \sum_{x \in \mathcal{E}} u[x] \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)} \leq \left(\frac{p}{u}\right)^{n \cdot u} \left(\frac{1-p}{1-u}\right)^{n \cdot (1-u)} = \exp(-n \cdot \text{RE}(u\|p)). \quad \square$$
How large are “typical” deviations?
How large are “typical” deviations?

“Fact”: $S \sim \text{Bin}(n, p)$ “typically” in $[np - 2\sqrt{np(1-p)}, np + 2\sqrt{np(1-p)}]$.
How large are “typical” deviations?

“Fact”: $S \sim \text{Bin}(n, p)$ “typically” in $\left[np - 2 \sqrt{np(1-p)}, np + 2 \sqrt{np(1-p)} \right]$.

$np \approx 3.333, \ 2\sqrt{np(1-p)} \approx 2.9814$
Moderate deviations

How large are “typical” deviations?

“Fact”: $S \sim \text{Bin}(n, p)$ “typically” in $\left[np - 2\sqrt{np(1-p)}, np + 2\sqrt{np(1-p)} \right]$.

Bin(100, 1/3)

$np \approx 33.333, \ 2\sqrt{np(1-p)} \approx 9.4281$
How large are “typical” deviations?

“Fact”: $S \sim \text{Bin}(n, p)$ “typically” in $[np - 2\sqrt{np(1-p)}, np + 2\sqrt{np(1-p)}]$.

Bin(1000, 1/3)

$np \approx 333.333, \quad 2\sqrt{np(1-p)} \approx 29.8142$
To rigorously quantify moderate deviations, can again use Chernoff bound

\[\mathbb{P}(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p)), \]

but ask how small can \(u \) be before the bound exceeds some fixed \(\delta \in (0, 1) \)?
To rigorously quantify moderate deviations, can again use Chernoff bound

\[\Pr(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u||p)), \]

but ask how small can \(u \) be before the bound exceeds some fixed \(\delta \in (0, 1) \)?

By calculus, for \(u > p \),

\[\text{RE}(u||p) \geq \frac{(u - p)^2}{2u}. \]

Therefore, for \(u > p \),

\[\Pr(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u||p)) \leq \exp\left(-n \cdot \frac{(u - p)^2}{2u}\right). \]
Moderate deviations

To rigorously quantify moderate deviations, can again use Chernoff bound

$$\Pr(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p)),$$

but ask how small can u be before the bound exceeds some fixed $\delta \in (0, 1)$?

By calculus, for $u > p$,

$$\text{RE}(u\|p) \geq \frac{(u - p)^2}{2u}.$$

Therefore, for $u > p$,

$$\Pr(S \geq n \cdot u) \leq \exp(-n \cdot \text{RE}(u\|p)) \leq \exp\left(-n \cdot \frac{(u - p)^2}{2u}\right).$$

By algebra, the RHS is $\leq \delta$ when

$$n \cdot u = n \cdot p + \sqrt{2np \ln(1/\delta)} + 2 \ln(1/\delta) = n \cdot p + O(\sqrt{n}).$$
Similar argument for lower tail.
Similar argument for lower tail.

By calculus, for $\ell < p \leq 1/2$,

$$\text{RE}(\ell \| p) \geq \frac{(p - \ell)^2}{2p}.$$

Therefore, for $\ell < p \leq 1/2$,

$$\mathbb{P}(S \leq n \cdot \ell) \leq \exp(-n \cdot \text{RE}(\ell \| p)) \leq \exp\left(-n \cdot \frac{(p - \ell)^2}{2p}\right).$$

By algebra, the RHS is δ when

$$n \cdot \ell = n \cdot p - \sqrt{2np \ln(1/\delta)} = n \cdot p - O(\sqrt{n}).$$
Combining upper and lower tail bounds: for $p \leq 1/2$,

$$
\mathbb{P}
\left(S \in \left[np - \sqrt{2np \ln(1/\delta)}, \; np + \sqrt{2np \ln(1/\delta)} + 2\ln(1/\delta)\right]\right) \geq 1 - 2\delta.
$$

Union bound: \(\mathbb{P}(A \cup B) \leq \mathbb{P}(A) + \mathbb{P}(B)\)
Another interpretation: estimating heads bias \(p \leq 1/2 \) from iid sample \(X_1, X_2, \ldots, X_n \) with

\[
\hat{p} := \frac{X_1 + X_2 + \cdots + X_n}{n}.
\]

With probability at least \(1 - 2\delta \),

\[
p - \sqrt{\frac{2p \ln(1/\delta)}{n}} \leq \hat{p} \leq p + \sqrt{\frac{2p \ln(1/\delta)}{n}} + \frac{2 \ln(1/\delta)}{n};
\]

i.e., the estimate \(\hat{p} \) is usually reasonably close to the truth \(p \).
Another interpretation: estimating heads bias $p \leq 1/2$ from iid sample X_1, X_2, \ldots, X_n with

$$
\hat{p} := \frac{X_1 + X_2 + \cdots + X_n}{n}.
$$

With probability at least $1 - 2\delta$,

$$
p - \sqrt{\frac{2p \ln(1/\delta)}{n}} \leq \hat{p} \leq p + \sqrt{\frac{2p \ln(1/\delta)}{n}} + \frac{2 \ln(1/\delta)}{n};
$$

i.e., the estimate \hat{p} is usually reasonably close to the truth p.

How close? Depends on:

- whether you’re asking about how far above p or how far below p (upper and lower tails are somewhat asymmetric);
- the sample size n;
- the true heads bias p itself;
- the “confidence” parameter δ.
APPLICATION: TEST ERROR RATE

Let $\hat{f}: \mathcal{X} \to \mathcal{Y}$ be a classifier, and suppose you have iid test data T (that are independent of \hat{f}); let $n := |T|$.
Let $\hat{f} : X \to Y$ be a classifier, and suppose you have iid test data T (that are independent of \hat{f}); let $n := |T|$.

True error rate (with $(X,Y) \sim P$):

$$err(\hat{f}) = P(\hat{f}(X) \neq Y).$$

Test error rate:

$$err(\hat{f}, T) = \frac{1}{n} \sum_{(x,y) \in T} 1\{\hat{f}(x) \neq y\}.$$

Distribution of test error rate:

$$n \cdot err(\hat{f}, T) \sim \text{Bin}(n, err(\hat{f})).$$
Application: Test Error Rate

Let $\hat{f}: \mathcal{X} \to \mathcal{Y}$ be a classifier, and suppose you have iid test data T (that are *independent of \hat{f}*); let $n := |T|$.

True error rate (with $(X, Y) \sim P$):

$$\text{err}(\hat{f}) = P(\hat{f}(X) \neq Y).$$

Test error rate:

$$\text{err}(\hat{f}, T) = \frac{1}{n} \sum_{(x, y) \in T} 1\{\hat{f}(x) \neq y\}.$$

Distribution of test error rate:

$$n \cdot \text{err}(\hat{f}, T) \sim \text{Bin}(n, \text{err}(\hat{f})).$$

Applying Chernoff bounds: with prob. $\geq 1 - 2\delta$ (w.r.t. random draw of T),

$$\left| \text{err}(\hat{f}) - \text{err}(\hat{f}, T) \right| \leq \sqrt{\frac{2 \text{err}(\hat{f}) \ln(1/\delta)}{n}} + \frac{2 \ln(1/\delta)}{n}.$$
APPLICATION: TEST ERROR RATE

Let \(\hat{f}: \mathcal{X} \rightarrow \mathcal{Y} \) be a classifier, and suppose you have iid test data \(T \) (that are independent of \(\hat{f} \)); let \(n := |T| \).

True error rate (with \((X, Y) \sim P \)):

\[
\text{err}(\hat{f}) = \mathbb{P}(\hat{f}(X) \neq Y).
\]

Test error rate:

\[
\text{err}(\hat{f}, T) = \frac{1}{n} \sum_{(x, y) \in T} 1\{\hat{f}(x) \neq y\}.
\]

Distribution of test error rate:

\[n \cdot \text{err}(\hat{f}, T) \sim \text{Bin}(n, \text{err}(\hat{f})) . \]

Applying Chernoff bounds: with prob. \(\geq 1 - 2\delta \) (w.r.t. random draw of \(T \)),

\[
\left| \text{err}(\hat{f}) - \text{err}(\hat{f}, T) \right| \leq \sqrt{\frac{2 \text{err}(\hat{f}) \ln(1/\delta)}{n}} + \frac{2 \ln(1/\delta)}{n} .
\]

Suggests (very) **rough idea** of the resolution at which you can distinguish classifiers’ error rates, based on size of test set.
Application: confidence intervals

(Estimate of heads bias with \(\hat{p} = (X_1 + \cdots + X_n)/n \).)

With probability at least \(1 - 2\delta \),

\[
p \in \left[\hat{p} - \sqrt{\frac{2p \ln(1/\delta)}{n}} - \frac{2 \ln(1/\delta)}{n}, \hat{p} + \sqrt{\frac{2p \ln(1/\delta)}{n}} \right].
\]
(Estimate of heads bias with $\hat{p} = (X_1 + \cdots + X_n)/n$.)

With probability at least $1 - 2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p \ln(1/\delta)}{n}} - \frac{2 \ln(1/\delta)}{n}, \hat{p} + \sqrt{\frac{2p \ln(1/\delta)}{n}} \right].$$

Unfortunately interval also depends on p.
(Estimate of heads bias with $\hat{p} = (X_1 + \cdots + X_n)/n$.)

With probability at least $1 - 2\delta$,

$$p \in \left[\hat{p} - \sqrt{\frac{2p \ln(1/\delta)}{n}} - \frac{2 \ln(1/\delta)}{n}, \hat{p} + \sqrt{\frac{2p \ln(1/\delta)}{n}} \right].$$

Unfortunately interval also depends on p.

Fix: can “solve” for the largest value of $q \in [0, 1]$ such that

$$q \leq \hat{p} + \sqrt{\frac{2q \ln(1/\delta)}{n}}$$

\rightarrow Upper limit of confidence interval. (Can similarly get lower limit.)
Recap

- Sums of iid Bernoulli random variables:
 - Deviations from mean of size $\Omega(n)$ are exponentially unlikely.
 - Bulk (e.g., 95%) of probability mass is within $O(\sqrt{n})$ of mean.
 - Applies in many other cases besides sums of iid Bernoulli.

- Tool: Chernoff bound
 - Reason about error rates.
 - Construct confidence intervals.