Regularization

Linear regression when \(d > n \)

Data in matrix/vector form

\[
A := \begin{bmatrix}
\leftarrow x_1^\top \\
\leftarrow x_2^\top \\
\vdots \\
\leftarrow x_n^\top
\end{bmatrix}_{n \times d \text{ matrix}}, \quad b := \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}_{n \times 1 \text{ vector}}.
\]

Ordinary least squares

Ordinary least squares \(\hat{w}_{\text{ols}} \): typically “defined” by \(\hat{w}_{\text{ols}} := (A^\top A)^{-1} A^\top b \).

Ill-defined when \(d > n \). In this case, the \(d \times d \) matrix

\[
A^\top A = \sum_{i=1}^{n} x_i x_i^\top
\]

is not invertible (as its rank is at most \(n < d \)).

Regularization

Typical solution: regularization

Some examples:

- encourage \(\|w\|_2^2 \) to be small (“ridge regression”)
- encourage \(\|w\|_1 \) to be small (“Lasso”)
- encourage \(w \) to be sparse (“sparse regression”)

Example: regularized least squares criterion

Find \(w \in \mathbb{R}^d \) to minimize

\[
\|A w - b\|_2^2 + \lambda R(w)
\]

where \(\lambda > 0 \) and \(R: \mathbb{R}^d \rightarrow \mathbb{R}_+ \) is a penalty function / regularizer.

Understanding regularization

How do I decide which type of regularization to use?

- Could just try them all . . .
- Better answer: try to understand their statistical behavior in a broad class of scenarios.
RIDGE REGRESSION

Find $w \in \mathbb{R}^d$ to minimize

$$\|Aw - b\|_2^2 + \lambda \|w\|_2^2$$

where $\lambda > 0$.

This always has a unique solution.

RIDGE REGRESSION VIA CALCULUS

Ridge regression objective is convex function of w.
Suffices to find w where gradient is zero.

$$\nabla_w \left\{ \|Aw - b\|_2^2 + \lambda \|w\|_2^2 \right\} = 2A^\top (Aw - b) + 2\lambda w.$$

This is zero when

$$(A^\top A + \lambda I)w = A^\top b,$$

a system of linear equations in w.
Matrix $A^\top A + \lambda I$ is invertible since $\lambda > 0$, so its unique solution is

$$\hat{w}_{\text{ridge}} := (A^\top A + \lambda I)^{-1} A^\top b.$$

RIDGE REGRESSION: GEOMETRY

If \hat{w}_{ols} exists, then ridge regression objective (as function of w) is

$$\|A(w - \hat{w}_{\text{ols}})\|_2^2 + \lambda \|w\|_2^2 + \text{(stuff not depending on } w),$$

Level sets for $\|A(w - \hat{w}_{\text{ols}})\|_2^2$

Level sets for $\lambda \|w\|_2^2$
Aside: Eigendecompositions

Every symmetric matrix $M \in \mathbb{R}^{d \times d}$ guaranteed to have eigendecomposition with real eigenvalues:

$$M = V \Lambda V^\top$$

real eigenvalues: $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d$ ($\Lambda = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_d)$);

corresponding orthonormal eigenvectors: v_1, v_2, \ldots, v_d ($V = [v_1 \mid v_2 | \cdots | v_d]$).

Eigenvectors v_1, v_2, \ldots, v_d constitute an orthonormal basis for \mathbb{R}^d.

So every $w \in \mathbb{R}^d$ can be written as a linear combination of these vectors:

$$w = \sum_{j=1}^{d} \langle v_j, w \rangle v_j.$$

Ridge regression: eigendecomposition

Write eigendecomposition of $A^\top A$ as

$$A^\top A = \sum_{j=1}^{d} \lambda_j v_j v_j^\top$$

where $v_1, v_2, \ldots, v_d \in \mathbb{R}^d$ are orthonormal eigenvectors with corresponding eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0$.

- For $\lambda > 0$, the inverse of $A^\top A + \lambda I$ exists, and has the form

$$\left(A^\top A + \lambda I\right)^{-1} = \sum_{j=1}^{d} \frac{1}{\lambda_j + \lambda} v_j v_j^\top.$$

Ridge regression vs. ordinary least squares

If \hat{w}_{ols} exists, then

$$\hat{w}_{\text{ridge}} = \left(A^\top A + \lambda I\right)^{-1} \left(A^\top A\right) \hat{w}_{\text{ols}}$$

$$= \left(\sum_{j=1}^{d} \frac{1}{\lambda_j + \lambda} v_j v_j^\top\right) \left(\sum_{j=1}^{d} \lambda_j v_j v_j^\top\right) \hat{w}_{\text{ols}}$$

$$= \left(\sum_{j=1}^{d} \frac{\lambda_j}{\lambda_j + \lambda} v_j v_j^\top\right) \hat{w}_{\text{ols}} \quad \text{(by orthogonality)}$$

$$= \sum_{j=1}^{d} \frac{\lambda_j}{\lambda_j + \lambda} \langle v_j, \hat{w}_{\text{ols}} \rangle v_j.$$

Interpretation: Shrink \hat{w}_{ols} towards zero by $\frac{\lambda_j}{\lambda_j + \lambda}$ factor in direction v_j.

Effective degrees-of-freedom: $\text{df}(\lambda) := \sum_{j=1}^{d} \frac{\lambda_j}{\lambda_j + \lambda}$.

Coefficient profile

Horizontal axis: varying λ (large λ to left, small λ to right).
Vertical axis: coefficient value in \hat{w}_{ridge} for eight different variables.
fixed-design setting

Easier/cleaner to study OLS and ridge regression in the **fixed design** setting:

- Assume x_1, x_2, \ldots, x_n are not random; only y_1, y_2, \ldots, y_n are random. (A is not random; only b is random.)
- Best predictor of y_i is $E[y_i]$ (in terms of expected square loss).
 Note: $x_i \mapsto E[y_i]$ might not be realized by a linear function.
- Let $w_\star \in \mathbb{R}^d$ be a weight vector that minimizes
 \[w \mapsto E[\|Aw - b\|^2]. \]
 (best linear predictor).
 If $A^\top A$ is invertible, then $w_\star = (A^\top A)^{-1} A^\top E[b]$.
- **Basic question:** how well can we estimate w_\star?

OLS: fixed-design analysis

When \hat{w}_{ols} exists (i.e., when $A^\top A$ is invertible), then it is an unbiased estimator of w_\star:

\[E[\hat{w}_{ols}] = w_\star. \]

Let $\varepsilon := b - Aw_\star$. Then

\[\text{cov}(\hat{w}_{ols}) = (A^\top A)^{-1} A^\top E[\varepsilon \varepsilon^\top] A(A^\top A)^{-1}. \]

For example, if $\varepsilon \sim N(0, \sigma^2 I)$, then

\[\text{cov}(\hat{w}_{ols}) = \sigma^2 (A^\top A)^{-1} = \sigma^2 \sum_{j=1}^d \frac{1}{\lambda_j} v_j v_j^\top, \]

so the variance of $\langle v_j, \hat{w}_{ols} \rangle$ is

\[\text{var}(\langle v_j, \hat{w}_{ols} \rangle) = v_j^\top \text{cov}(\hat{w}_{ols}) v_j = \frac{\sigma^2}{\lambda_j}. \]

Note: if λ_d is very close to zero (so $A^\top A$ is close to being singular), then the variance in direction v_d is very high.
RIDGE REGRESSION: FIXED-DESIGN ANALYSIS

Ridge regression is not an unbiased estimator w_*:

$$\mathbb{E}[\hat{w}_{\text{ridge}}] \neq w_*.$$

But, covariance of \hat{w}_{ridge} is always “smaller” than that of \hat{w}_{ols}:

$$\text{cov}(\hat{w}_{\text{ridge}}) = (A^T A + \lambda I)^{-1} A^T \mathbb{E}[\epsilon \epsilon^T] A (A^T A + \lambda I)^{-1}$$

$$= M \text{cov}(\hat{w}_{\text{ols}}) M \quad \text{(if } \hat{w}_{\text{ols}} \text{ exists)},$$

where

$$M := \sum_{j=1}^d \frac{\lambda_j}{\lambda_j + \lambda} v_j v_j^T.$$

For example, if $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$, then

$$\text{cov}(\hat{w}_{\text{ridge}}) = \sigma^2 \sum_{j=1}^d \frac{\lambda_j}{(\lambda_j + \lambda)^2} v_j v_j^T = \sigma^2 \sum_{j: \lambda_j > 0} \left(1 + \frac{\lambda_j}{\lambda_j + \lambda} \right) \frac{1}{\lambda_j} v_j v_j^T.$$

Bias-variance trade-off

Very explicit bias-variance trade-off

$$w_* - \mathbb{E}[\hat{w}_{\text{ridge}}] = \sum_{j=1}^d \frac{\lambda_j}{\lambda_j + \lambda} (v_j, w_*) v_j,$$

$$\text{cov}(\hat{w}_{\text{ridge}}) = (\lambda^T A + \lambda I)^{-1} A^T \mathbb{E}[\epsilon \epsilon^T] A (A^T A + \lambda I)^{-1}.$$

Using a similar analysis, can also reveal trade-off in excess expected square loss:

$$\mathbb{E}\left[\|A \hat{w}_{\text{ridge}} - b\|_2^2\right] - \mathbb{E}\left[\|A w_* - b\|_2^2\right].$$

OTHER INTERPRETATIONS

- Suppose we replace A and b with

$$\tilde{A} := \begin{bmatrix} A \\ \sqrt{\lambda} Q \end{bmatrix}, \quad \tilde{b} := \begin{bmatrix} b \\ 0 \end{bmatrix},$$

where $Q \in \mathbb{R}^{(n+d) \times d}$ is any orthogonal matrix. That is, add d fictitious labeled data $(\sqrt{\lambda} q_j, 0)$ for $j = 1, 2, \ldots, d$, where q_1, q_2, \ldots, q_d is an orthonormal basis.

- Then $\tilde{A}^T \tilde{A} = A^T A + \lambda I$, and $\tilde{A}^T \tilde{b} = A^T b$.

- So \tilde{w}_{ols} using \tilde{A} and \tilde{b} is the same as \hat{w}_{ridge} using A and b.

- For a similar reason, \hat{w}_{ridge} has a certain Bayesian interpretation.

RIDGE REGRESSION: SUMMARY

- Ridge regression always well-defined (for $\lambda > 0$), unlike OLS (which is degenerate ridge regression with $\lambda = 0$).

- Behavior depends on eigenvectors/eigenvalues of $A^T A$; the original “coordinate system” is not relevant here.

- Relative to \hat{w}_{ols}: shrinks \hat{w}_{ols} along eigenvector directions by amount related to eigenvalue and λ.

- Regularization parameter λ is tuning-knob that controls bias-variance trade-off.

- Can be thought of as applying OLS to an augmented data set with “fake data” that ensures OLS is well-defined.
Sparse regression

Another form of regularization: only consider sparse w—i.e., w with only a small number ($\ll d$) of non-zero entries.

Other advantages of sparsity (especially relative to ridge):
- Sparse solutions easier to “interpret” (but caveats about interpreting weights from before still apply).
- Can be more efficient to evaluate $\langle w, x \rangle$ (both in terms of computing variable values and computing inner product).

Sparse regression methods

For any $T \subseteq \{1, 2, \ldots, d\}$, let $\hat{w}_T :=$ OLS only using variables in T.

Subset selection

Brute-force strategy. Pick the $T \subseteq \{1, 2, \ldots, d\}$ of size $|T| = k$ for which

$$\|A\hat{w}_T - b\|_2^2$$

is minimal, and return \hat{w}_T.

- Gives you exactly what you want (for given value k).
- Only feasible for very small k, since complexity scales with $\binom{d}{k}$.
- (NP-hard optimization problem.)

Forward stepwise regression

Greedy strategy. Starting with $T = \emptyset$, repeat until $|T| = k$:

Pick the $j \in \{1, 2, \ldots, d\} \setminus T$ for which

$$\|A\hat{w}_{T \cup \{j\}} - b\|_2^2$$

is minimal, and add this j to T.

Return $\hat{w}(T)$.

- Gives you a k-sparse solution.
- Primarily only effective when columns of A are close to orthogonal.
Aside: l_p norms

For $p \geq 1$,
\[
\|v\|_p = \left(\sum_{j=1}^{d} |v_j|^p \right)^{1/p}.
\]
In particular,
\[
\|v\|_1 = \sum_{j=1}^{d} |v_j|.
\]
These are norms on \mathbb{R}^d, so:
- $\|u - v\|_p$ is a valid metric on points in \mathbb{R}^d, and
- $\|cv\|_p = |c| \cdot \|v\|_p$ for any $v \in \mathbb{R}^d$ and $c \in \mathbb{R}$.

Lasso: least absolute shrinkage and selection operator

Let \hat{w}_{lasso} be a minimizer of
\[
\arg \min_{w \in \mathbb{R}^p} \|A w - b\|_2^2 + \lambda \|w\|_1.
\]
Objective function is convex though not differentiable.

If \hat{w}_{ols} exists, then Lasso objective (as function of w) is
\[
\|A(w - \hat{w}_{\text{ols}})\|_2^2 + \lambda \|w\|_1 + \text{(stuff not depending on w)}.
\]

Coefficient profile (Ridge vs. Lasso)

Horizontal axis: varying λ (large λ to left, small λ to right).
Vertical axis: coefficient value in \hat{w}_{ridge} and \hat{w}_{lasso} for eight different variables.

Lasso: theory

Many results, mostly roughly of the following flavor.
Suppose
- $b \sim N(Aw_*, \sigma^2 I)$;
- w_* has $\leq k$ non-zero entries;
- A satisfies some special properties (typically not efficiently checkable);
- $\lambda \gtrsim \sigma \sqrt{2n \log(d)}$;
then
\[
\mathbb{E}[\|w_* - \hat{w}_{\text{lasso}}\|_2^2] \leq O\left(\frac{\sigma^2 k \log(d)}{n}\right).
\]
Closely related to “compressed sensing”; theory involves high-dimensional convex geometry.
Sparse regression: summary

- **Sparsity**: a form of "regularization", but also desirable for other reasons.
- **Subset selection**: generally intractable.
- **Greedy algorithms** (e.g., forward stepwise regression): sometimes works.
- **Lasso**: shrink coefficients towards zero in a way that tends to lead to sparse solutions.