Learning reductions

In machine learning, typically have

- **Problem 1**: the problem you have to solve for a real application
- **Problem 2**: a well-studied problem in machine learning
- **Problem instance**: training data and (implicitly) a probability distribution P
- **Solution**: prediction functions
- **A**: the latest, greatest learning algorithm for Problem 2

Examples

1. **Problem**: importance-weighted classification
 - **Reduction**: rejection sampling
 (Reduces problem to unweighted classification.)
2. **Problem**: multi-class classification
 - **Reduction**: One-Against-All
 (Reduces problem to binary classification.)

Importance-weighted classification

Problem:

- **Setting**: Random triple $(X, Y, C) \sim P$ for some probability distribution P over $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$.
 - $C = \text{importance weight}$ for labeled example (X, Y).
- **Goal**: Function $f : \mathcal{X} \rightarrow \mathcal{Y}$ with small importance-weighted error:
 \[
 \mathbb{E} \left[C \cdot 1 \{ f(X) \neq Y \} \right].
 \]

Problem instance:

- Training data S: collection of triples $(x, y, c) \in \mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+$, presumed to be drawn i.i.d. from P.

Where it comes up:

- **Class-specific weights**: e.g., $C = 100 \iff Y = 0$ (and $C = 1$ otherwise).
- **Input-specific weights**: e.g., $C = 100 \iff X \in \mathcal{X}_0$ (and $C = 1$ o.w.).
- **Boosting, domain adaptation, causal inference, ...**
 (Note: many learning algorithms natively handle importance weights.)

Would like to reduce to (unweighted) classification.
The rejection sampling reduction

Main idea: Transform training data S so it looks like it came from a distribution P', where

$$
E_{(X,Y,C) \sim P} \left[C \cdot 1 \{ f(X) \neq Y \} \right] = E_{(X',Y') \sim P'} \left[1 \{ f(X') \neq Y' \} \right].
$$

Instance mapping procedure

Input Training data S from $\mathcal{X} \times \mathcal{Y} \times \mathbb{R}_+^+$.
1: Initialize $S' = \emptyset$.
2: Let $c_{\text{max}} := \max_{(x,y,c) \in S} c$.
3: for each $(x, y, c) \in S$ do
4: Toss a coin with heads bias c / c_{max}.
5: If heads, keep example—put (x, y) into S'.
6: If tails, discard example.
7: end for
8: return Training data S' from $\mathcal{X} \times \mathcal{Y}$.

Solution mapping procedure: identity map

Why rejection sampling works: (Assume for simplicity that $c_{\text{max}} = 1$.) Define random variable

$$
Q := 1 \{ \text{Keep example } (X,Y) \}
$$

which, after conditioning on (X,Y,C), has mean C.

Distribution of examples in S' is same as that of (X,Y) conditioned on $Q = 1$.

Moreover,

$$
E \left[Q \cdot 1 \{ f(X) \neq Y \} \right] = E \left[E \left[Q \cdot 1 \{ f(X) \neq Y \} \mid (X,Y,C) \right] \right] = E \left[C \cdot 1 \{ f(X) \neq Y \} \right]
$$

Conclusion: Prediction error w.r.t. P' \propto importance-weighted error w.r.t. P.

Multi-class classification

Problem:

- **Setting:** Random pair $(X,Y) \sim P$ for some probability distribution P over $\mathcal{X} \times \{1,2,\ldots,K\}$.
- **Goal:** Function $f: \mathcal{X} \to \mathcal{Y}$ with small prediction error $P(f(X) \neq Y)$.

Problem instance:

- Training data S: collection of pairs $(x,y) \in \mathcal{X} \times \{1,2,\ldots,K\}$, presumed to be drawn i.i.d. from P.

Would like to reduce to binary classification.

One-Against-All reduction

Main idea: Create K binary classification problems $\text{given } x \in \mathcal{X}$, predict whether or not $y = i$.

Create K examples from each $(x,y) \in S$:

$$(x,y) \mapsto \begin{cases}
(x, 1\{y = 1\}) & \mapsto S'_1 \\
(x, 1\{y = 2\}) & \mapsto S'_2 \\
\vdots & \vdots \\
(x, 1\{y = K\}) & \mapsto S'_K
\end{cases}$$
One-Against-All reduction

Instance mapping procedure

Input: Training data \(S \) from \(\mathcal{X} \times \{1, 2, \ldots, K\} \).

1. Initialize empty sets \(S'_1, S'_2, \ldots, S'_K \).
2. for each \((x, y) \in S\) do
3. \hspace{1em} for each \(i = 1, 2, \ldots, K\) do
4. \hspace{2em} Put \((x, \mathbb{1}\{y = i\}) \in \mathcal{X} \times \{0, 1\}\) into \(S'_i\).
5. \hspace{1em} end for
6. end for
7. return Training data sets \(S'_1, S'_2, \ldots, S'_K \) from \(\mathcal{X} \times \{0, 1\} \).

Solution mapping procedure

Input: \(K \) binary predictors \(f'_1, f'_2, \ldots, f'_K : \mathcal{X} \to \{0, 1\} \).

return Function \(f : \mathcal{X} \to \{1, 2, \ldots, K\} \) where

\[
f(x) = \arg \max_{i \in \{1, 2, \ldots, K\}} f'_i(x) \quad \text{(breaking ties arbitrarily)}.
\]

Problem with OAA

OAA multi-class predictor:

\[
f(x) = \arg \max_{i \in \{1, 2, \ldots, K\}} f'_i(x).
\]

Only get correct classification on \((x,y)\) if \(f'_y(x) = 1 \) and \(f'_i(x) = 0 \) for all \(i \neq y \).
(Could err if any of the \(f'_i \) errs!)

Solution: use conditional probability estimation

\[
f'_i(x) = \text{estimate of } P(Y = i \mid X = x).
\]

Summary

- **Reductions**: reuse existing technology to solve new problems.
 - Multi-class (OAA, ECOC, tournaments, \ldots)
 - Multi-label prediction
 - Ranking
 - Sequence prediction
 - \ldots
- **Lots of different problems and objectives** beyond binary classification and prediction error—can be application-/domain-specific.
- **Very useful tools**:
 - Importance-weighted classification (using reductions)
 - Conditional probability estimation (using certain loss functions)