Principal component analysis

Representation learning

Useful representations of data

Representation learning:
- **Given:** raw feature vectors \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d \).
- **Goal:** learn a “useful” feature transformation \(\phi : \mathbb{R}^d \to \mathbb{R}^k \).
 (Often \(k \ll d \)—i.e., *dimensionality reduction*—but not always.)

 Can then use \(\phi \) as a feature map for supervised learning.

Some previously encountered examples:
- Feature maps corresponding to pos. def. kernels (+approximations).
 (Usually *data-oblivious*—feature map doesn’t depend on the data.)
- Centering \(x \mapsto x - \mu \)
 (Effect: resulting features have mean 0.)
- Standardization \(x \mapsto \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_d)^{-1}(x - \mu) \).
 (Effect: resulting features have mean 0 and unit variance.)

What other properties of a feature representation may be desirable?
Dimensionality reduction via projections

Projections

- **Input:** \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d \), target dimensionality \(k \in \mathbb{N} \).
- **Output:** a \(k \)-dimensional subspace, represented by an orthonormal basis \(q_1, q_2, \ldots, q_k \in \mathbb{R}^d \).
- **Projection:** Formally, projection of \(x \in \mathbb{R}^d \) to \(\text{span}(q_1, q_2, \ldots, q_k) \) is
 \[
 \left(\sum_{i=1}^{k} q_i q_i^\top \right) x = \sum_{i=1}^{k} \langle q_i, x \rangle q_i \in \mathbb{R}^d .
 \]

But, we can simply represent the projection in terms of its coefficients w.r.t. the orthonormal basis \(q_1, q_2, \ldots, q_k \):

\[
\phi(x) := \begin{bmatrix} \langle q_1, x \rangle \\ \langle q_2, x \rangle \\ \vdots \\ \langle q_k, x \rangle \end{bmatrix} \in \mathbb{R}^k .
\]

Aside: Eigendecompositions

Every symmetric matrix \(M \in \mathbb{R}^{d \times d} \) guaranteed to have eigendecomposition with real eigenvalues:

\[
M = V \Lambda V^\top
\]

where \(V = [v_1 | v_2 | \cdots | v_d] \); corresponding orthonormal eigenvectors: \(v_1, v_2, \ldots, v_d \) \((V = [v_1 | v_2 | \cdots | v_d]) \).

Fixed-point characterization of eigenvectors:

\[
M v_i = \lambda_i v_i .
\]
Eigendecompositions

Variational characterization of eigenvectors:
\[
\max_{q \in \mathbb{R}^d} q^\top M q \\
\text{s.t. } \|q\|_2 = 1
\]

- Maximum value: \(\lambda_1\) (top eigenvalue)
- Maximizer: \(v_1\) (top eigenvector)

For \(i > 1\),
\[
\max_{q \in \mathbb{R}^d} q^\top M q \\
\text{s.t. } \|q\|_2 = 1 \\
\langle q, v_j \rangle = 0 \ \forall j < i
\]

- Maximum value: \(\lambda_i\) (\(i\)-th largest eigenvalue)
- Maximizer: \(v_i\) (\(i\)-th eigenvector)

Principal component analysis (general \(k\))

General \(k\) case (\(\Pi = QQ^\top\))
\[
\arg\min_{Q \in \mathbb{R}^{d \times k}} \frac{1}{n} \sum_{i=1}^n \|x_i - QQ^\top x_i\|_2^2 \\
\equiv \arg\max_{Q \in \mathbb{R}^{d \times k} \ | Q^\top Q = I} \tr \left(Q^\top \left(\frac{1}{n} A^\top A \right) Q \right).
\]

Solution: \(k\) eigenvectors of \(A^\top A\) corresponding to \(k\) largest eigenvalue
\[
\tr \left(Q^\top \left(\frac{1}{n} A^\top A \right) Q \right) = \sum_{i=1}^k \text{empirical variance in direction } q_i,
\]

Principle component analysis (\(k = 1\))

\(k = 1\) case (\(\Pi = qq^\top\))
\[
\arg\min_{q \in \mathbb{R}^d \ | \|q\|_2 = 1} \frac{1}{n} \sum_{i=1}^n \|x_i - qq^\top x_i\|_2^2 \\
\equiv \arg\max_{q \in \mathbb{R}^d \ | \|q\|_2 = 1} q^\top \left(\frac{1}{n} A^\top A \right) q.
\]

Solution: eigenvector of \(A^\top A\) corresponding to largest eigenvalue (i.e., the top eigenvector \(v_1\)).
\[
q^\top \left(\frac{1}{n} A^\top A \right) q = \frac{1}{n} \sum_{i=1}^n (q^\top x_i)^2 = \text{empirical variance in direction } q
\]

PCA on OCR digits data

Data \(\{x_i\}_{i=1}^n\) from \(\mathbb{R}^{784}\).

- Fraction of residual variance left by rank-\(k\) PCA projection:
 \[
 1 - \frac{\sum_{j=1}^k \text{variance in direction } v_j}{\text{total variance}}.
 \]
- Fraction of residual variance left by best \(k\) coordinate projections:
 \[
 1 - \frac{\sum_{j=1}^k \text{variance in direction } e_j}{\text{total variance}}.
 \]
Principal component analysis (PCA)

Data matrix $A \in \mathbb{R}^{n \times d}$

Rank k PCA (k dimensional linear subspace)
- Get top k eigenvectors $\hat{V}_k := [v_1 | v_2 | \ldots | v_k]$ of
 \[
 \frac{1}{n} A^\top A = \frac{1}{n} \sum_{i=1}^{n} x_i x_i^\top.
 \]
- Feature map: $\phi(x) := \langle v_1, x \rangle, \langle v_2, x \rangle, \ldots, \langle v_k, x \rangle \in \mathbb{R}^k$.
- Decorrelating property:
 \[
 \frac{1}{n} \sum_{i=1}^{n} \phi(x_i) \phi(x_i)^\top = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_k).
 \]
- Approx. reconstruction: $x \mapsto \hat{V}_k \phi(x)$.

Example: compressing digits images

16 × 16 pixel images of handwritten 3s (as vectors in \mathbb{R}^{256})

Mean μ and eigenvectors v_1, v_2, v_3, v_4

<table>
<thead>
<tr>
<th>Mean</th>
<th>$\lambda_1 = 3.4 \cdot 10^4$</th>
<th>$\lambda_2 = 2.8 \cdot 10^4$</th>
<th>$\lambda_3 = 2.4 \cdot 10^4$</th>
<th>$\lambda_4 = 1.6 \cdot 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reconstructions:

x $k = 1$ $k = 10$ $k = 50$ $k = 200$

Only have to store k numbers per image, along with the mean μ and k eigenvectors ($256(k + 1)$ numbers).

Example: eigenfaces

92 × 112 pixel images of faces (as vectors in \mathbb{R}^{10304})

An image of 100 example images of eigenfaces, showing the visual impact of reducing the dimensionality of the data through PCA.
Other examples

- \(x \in \mathbb{R}^d \): movement of stock prices for \(d \) different stocks in one day.

Principal component: combination of stocks that account for the most variation in stock price movement.

- \(x \in \{1, 2, \ldots, 5\}^d \): levels at which various terms describe an individual (e.g., "jolly", "impulsive", "outgoing", "conceited", "meddlesome")

Principal components: major personality axes in a population (e.g., "extroversion", "agreeableness", "conscientiousness")

Singular value decomposition

Every matrix \(A \in \mathbb{R}^{n \times d} \) has a singular value decomposition (SVD)

\[
A = U S V^\top = \sum_{i=1}^{r} s_i u_i v_i^\top
\]

where

- \(r = \text{rank}(A) \) \((r \leq \min\{n, d\})\);
- \(U^\top U = I \) (i.e., \(U = [u_1 | u_2 | \cdots | u_r] \) has orthonormal columns)
 - left singular vectors;
- \(S = \text{diag}(s_1, s_2, \ldots, s_r) \) where \(s_1 \geq s_2 \geq \cdots \geq s_r > 0 \)
 - singular values;
- \(V^\top V = I \) (i.e., \(V = [v_1 | v_2 | \cdots | v_r] \) has orthonormal columns)
 - right singular vectors.

Low-rank SVD

For any \(k \leq \text{rank}(A) \), rank-\(k \) SVD approximation:

\[
A \approx \hat{U}_k \hat{S}_k \hat{V}_k^\top = \sum_{i=1}^{k} s_i \hat{u}_i \hat{v}_i^\top
\]

(Just retain top \(k \) left/right singular vectors and singular values from SVD.)

Best rank-\(k \) approximation:

\[
\hat{A} := \hat{U}_k \hat{S}_k \hat{V}_k^\top = \arg \min_{M \in \mathbb{R}^{n \times d}} \sum_{i=1}^{n} \sum_{j=1}^{d} (A_{i,j} - M_{i,j})^2.
\]

Minimum value is simply given by

\[
\sum_{i=1}^{n} \sum_{j=1}^{d} (A_{i,j} - \hat{A}_{i,j})^2 = \sum_{t>k} s^2_t.
\]
Example: latent semantic analysis

Represent corpus of documents by counts of words they contain:

<table>
<thead>
<tr>
<th>Word</th>
<th>document 1</th>
<th>document 2</th>
<th>document 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>aardvark</td>
<td>3 0 0</td>
<td>7 0 4</td>
<td>2 4 0</td>
</tr>
<tr>
<td>abacus</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>abalone</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

- One column per vocabulary word in $A \in \mathbb{R}^{n \times d}$
- One row per document in $A \in \mathbb{R}^{n \times d}$
- $A_{i,j}$ = numbers of times word j appears in document i.

Example: latent semantic analysis

Statistical model for document-word count matrix.

Parameters $\theta = (\beta_1, \beta_2, \ldots, \beta_k, t_1, t_2, \ldots, t_n, \ell_1, \ell_2, \ldots, \ell_n)$.

- $k \ll \min\{n, d\}$ “topics”, each represented by a distributions over vocabulary words:
 $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}^d_+.$
 Each $\beta_t = (\beta_{t,1}, \beta_{t,2}, \ldots, \beta_{t,d})$ is a probability vector, so $\sum_{j=1}^d \beta_{t,j} = 1$.
- Each document i is associated with a topic $t_i \in \{1, 2, \ldots, k\}$.
- Length of document i is ℓ_i.

Model posits that document i’s count vector (i-th row in A) is drawn from a multinomial distribution with probabilities given by β_{t_i}:

$$(A_{i,1}, A_{i,2}, \ldots, A_{i,d}) \sim \text{Multinomial}(\ell_i, \beta_{t_i}).$$

Example: latent semantic analysis

Using SVD: rank-k SVD $\hat{U}_k \hat{S}_k \hat{V}_k^T$ of A gives approximation to LB^T:

$$\hat{A} := \hat{U}_k \hat{S}_k \hat{V}_k^T \approx \mathbb{E}(A) = LB^T.$$
(SVD helps remove some of the effect of the noise.)

- Each of the n documents can be summarized by k numbers:
 $\hat{A} \hat{V}_k = \hat{U}_k \hat{S}_k \hat{V}_k \in \mathbb{R}^{n \times k}$.
- New document feature representation very useful for information retrieval.
 (Example: cosine similarities between documents become faster to compute and possibly less noisy.)
- Actually estimating L and B takes a bit more work.

Example: latent semantic analysis

Suppose $A \sim P_\theta$.

In expectation, A has rank $\leq k$:

$$\mathbb{E}(A) = L B^T$$

- $L_{i,t_i} = \ell_i$ (length of document i) (other entries are zero).
- β_t = t-th column of B

Observed matrix A:

$$A = \mathbb{E}(A) + \text{Zero mean noise}$$

so A is generally of rank $\min\{n, d\} \gg k$.

Example: latent semantic analysis

Statistical model for document-word count matrix.

Parameters $\theta = (\beta_1, \beta_2, \ldots, \beta_k, t_1, t_2, \ldots, t_n, \ell_1, \ell_2, \ldots, \ell_n)$.

- $k \ll \min\{n, d\}$ “topics”, each represented by a distributions over vocabulary words:
 $\beta_1, \beta_2, \ldots, \beta_k \in \mathbb{R}^d_+.$
 Each $\beta_t = (\beta_{t,1}, \beta_{t,2}, \ldots, \beta_{t,d})$ is a probability vector, so $\sum_{j=1}^d \beta_{t,j} = 1$.
- Each document i is associated with a topic $t_i \in \{1, 2, \ldots, k\}$.
- Length of document i is ℓ_i.

Model posits that document i’s count vector (i-th row in A) is drawn from a multinomial distribution with probabilities given by β_{t_i}:

$$(A_{i,1}, A_{i,2}, \ldots, A_{i,d}) \sim \text{Multinomial}(\ell_i, \beta_{t_i}).$$
Recap

- **PCA**: directions of maximum variance in data \(\equiv\) subspace that minimizes residual squared error.
- **SVD**: general decomposition for arbitrary rectangular matrices
 - **Low-rank SVD**: best low-rank approximation of a matrix
- **PCA/SVD**: often useful when low-rank structure is expected (e.g., probabilistic modeling).